on the problems in "6 Hyperbolic functions/6.1 Hyperbolic sine"
Test results for the 136 problems in " $6.1 .1(c+d x)^{\wedge} m(a+b$ sinh $) \wedge n . t x t "$
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{4} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 3, 91 leaves, 5 steps):

$$
\frac{24 d^{4} \cosh (b x+a)}{b^{5}}+\frac{12 d^{2}(d x+c)^{2} \cosh (b x+a)}{b^{3}}+\frac{(d x+c)^{4} \cosh (b x+a)}{b}-\frac{24 d^{3}(d x+c) \sinh (b x+a)}{b^{4}}-\frac{4 d(d x+c)^{3} \sinh (b x+a)}{b^{2}}
$$

Result (type 3, 546 leaves):
$\frac{1}{b}\left(c^{4} \cosh (b x+a)-\frac{12 d^{3} a c\left((b x+a)^{2} \cosh (b x+a)-2(b x+a) \sinh (b x+a)+2 \cosh (b x+a)\right)}{b^{3}}\right.$
$+\frac{12 d^{3} a^{2} c((b x+a) \cosh (b x+a)-\sinh (b x+a))}{b^{3}}-\frac{12 d^{2} a c^{2}((b x+a) \cosh (b x+a)-\sinh (b x+a))}{b^{2}}$
$+\frac{d^{4}\left((b x+a)^{4} \cosh (b x+a)-4(b x+a)^{3} \sinh (b x+a)+12(b x+a)^{2} \cosh (b x+a)-24(b x+a) \sinh (b x+a)+24 \cosh (b x+a)\right)}{b^{4}}$
$+\frac{d^{4} a^{4} \cosh (b x+a)}{b^{4}}-\frac{4 d^{4} a^{3}((b x+a) \cosh (b x+a)-\sinh (b x+a))}{b^{4}}+\frac{4 d c^{3}((b x+a) \cosh (b x+a)-\sinh (b x+a))}{b}$
$-\frac{4 d^{3} a^{3} c \cosh (b x+a)}{b^{3}}+\frac{6 d^{2} a^{2} c^{2} \cosh (b x+a)}{b^{2}}-\frac{4 d a c^{3} \cosh (b x+a)}{b}$
$-\frac{4 d^{4} a\left((b x+a)^{3} \cosh (b x+a)-3(b x+a)^{2} \sinh (b x+a)+6(b x+a) \cosh (b x+a)-6 \sinh (b x+a)\right)}{b^{4}}$
$+\frac{4 d^{3} c\left((b x+a)^{3} \cosh (b x+a)-3(b x+a)^{2} \sinh (b x+a)+6(b x+a) \cosh (b x+a)-6 \sinh (b x+a)\right)}{b^{3}}$
$+\frac{6 d^{4} a^{2}\left((b x+a)^{2} \cosh (b x+a)-2(b x+a) \sinh (b x+a)+2 \cosh (b x+a)\right)}{b^{4}}$
$\left.+\frac{6 d^{2} c^{2}\left((b x+a)^{2} \cosh (b x+a)-2(b x+a) \sinh (b x+a)+2 \cosh (b x+a)\right)}{b^{2}}\right)$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 3, 49 leaves, 3 steps):

$$
\frac{2 d^{2} \cosh (b x+a)}{b^{3}}+\frac{(d x+c)^{2} \cosh (b x+a)}{b}-\frac{2 d(d x+c) \sinh (b x+a)}{b^{2}}
$$

Result(type 3, 146 leaves):

$$
\begin{aligned}
\frac{1}{b}\left(\frac{d^{2}\left((b x+a)^{2} \cosh (b x+a)-2(b x+a) \sinh (b x+a)+2 \cosh (b x+a)\right)}{b^{2}}-\frac{2 d^{2} a((b x+a) \cosh (b x+a)-\sinh (b x+a))}{b^{2}}\right. \\
\left.\quad+\frac{2 d c((b x+a) \cosh (b x+a)-\sinh (b x+a))}{b}+\frac{d^{2} a^{2} \cosh (b x+a)}{b^{2}}-\frac{2 d a c \cosh (b x+a)}{b}+c^{2} \cosh (b x+a)\right)
\end{aligned}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (b x+a)}{(d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 96 leaves, 5 steps):

$$
-\frac{b \cosh (b x+a)}{2 d^{2}(d x+c)}+\frac{b^{2} \cosh \left(a-\frac{b c}{d}\right) \operatorname{Shi}\left(\frac{b c}{d}+b x\right)}{2 d^{3}}+\frac{b^{2} \operatorname{Chi}\left(\frac{b c}{d}+b x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 d^{3}}-\frac{\sinh (b x+a)}{2 d(d x+c)^{2}}
$$

Result(type 4, 276 leaves):

$$
\begin{aligned}
& -\frac{b^{3} \mathrm{e}^{-b x-a} x}{4 d\left(b^{2} d^{2} x^{2}+2 b^{2} c d x+c^{2} b^{2}\right)}-\frac{b^{3} \mathrm{e}^{-b x-a} c}{4 d^{2}\left(b^{2} d^{2} x^{2}+2 b^{2} c d x+c^{2} b^{2}\right)}+\frac{b^{2} \mathrm{e}^{-b x-a}}{4 d\left(b^{2} d^{2} x^{2}+2 b^{2} c d x+c^{2} b^{2}\right)}+\frac{b^{2} \mathrm{e}^{-\frac{a d-c b}{d}} \mathrm{Ei}_{1}\left(b x+a-\frac{a d-c b}{d}\right)}{4 d^{3}} \\
& -\frac{b^{2} \mathrm{e}^{b x+a}}{4 d^{3}\left(\frac{b c}{d}+b x\right)^{2}}-\frac{b^{2} \mathrm{e}^{b x+a}}{4 d^{3}\left(\frac{b c}{d}+b x\right)}-\frac{b^{2} \mathrm{e}^{\frac{a d-c b}{d}} \operatorname{Ei}_{1}\left(-b x-a-\frac{-a d+c b}{d}\right)}{4 d^{3}}
\end{aligned}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 3, 85 leaves, 4 steps):

$$
-\frac{d^{2} x}{4 b^{2}}-\frac{(d x+c)^{3}}{6 d}+\frac{d^{2} \cosh (b x+a) \sinh (b x+a)}{4 b^{3}}+\frac{(d x+c)^{2} \cosh (b x+a) \sinh (b x+a)}{2 b}-\frac{d(d x+c) \sinh (b x+a)^{2}}{2 b^{2}}
$$

Result(type 3, 261 leaves):
$\frac{1}{b}\left(\frac{d^{2}\left(\frac{(b x+a)^{2} \cosh (b x+a) \sinh (b x+a)}{2}-\frac{(b x+a)^{3}}{6}-\frac{(b x+a) \cosh (b x+a)^{2}}{2}+\frac{\cosh (b x+a) \sinh (b x+a)}{4}+\frac{b x}{4}+\frac{a}{4}\right)}{b^{2}}\right.$
$-\frac{2 d^{2} a\left(\frac{(b x+a) \cosh (b x+a) \sinh (b x+a)}{2}-\frac{(b x+a)^{2}}{4}-\frac{\cosh (b x+a)^{2}}{4}\right)}{b^{2}}$


$$
\left.-\frac{2 d a c\left(\frac{\cosh (b x+a) \sinh (b x+a)}{2}-\frac{b x}{2}-\frac{a}{2}\right)}{b}+c^{2}\left(\frac{\cosh (b x+a) \sinh (b x+a)}{2}-\frac{b x}{2}-\frac{a}{2}\right)\right)
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (b x+a)^{2}}{(d x+c)^{4}} \mathrm{~d} x
$$

Optimal(type 4, 150 leaves, 7 steps):

$$
-\frac{b^{2}}{3 d^{3}(d x+c)}+\frac{2 b^{3} \cosh \left(2 a-\frac{2 b c}{d}\right) \operatorname{Shi}\left(\frac{2 b c}{d}+2 b x\right)}{3 d^{4}}+\frac{2 b^{3} \operatorname{Chi}\left(\frac{2 b c}{d}+2 b x\right) \sinh \left(2 a-\frac{2 b c}{d}\right)}{3 d^{4}}-\frac{b \cosh (b x+a) \sinh (b x+a)}{3 d^{2}(d x+c)^{2}}
$$

$$
-\frac{\sinh (b x+a)^{2}}{3 d(d x+c)^{3}}-\frac{2 b^{2} \sinh (b x+a)^{2}}{3 d^{3}(d x+c)}
$$

Result(type 4, 554 leaves):

$$
\begin{aligned}
& \frac{1}{6 d(d x+c)^{3}}-\frac{b^{5} \mathrm{e}^{-2 b x-2 a} x^{2}}{6 d\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)}-\frac{b^{5} \mathrm{e}^{-2 b x-2 a} c x}{3 d^{2}\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)} \\
& -\frac{b^{5} \mathrm{e}^{-2 b x-2 a} c^{2}}{6 d^{3}\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)}+\frac{b^{4} \mathrm{e}^{-2 b x-2 a x}}{12 d\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)} \\
& +\frac{b^{4} \mathrm{e}^{-2 b x-2 a c}}{12 d^{2}\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)}-\frac{b^{3} \mathrm{e}^{-2 b x-2 a}}{12 d\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)} \\
& + \\
& +\frac{b^{3} \mathrm{e}^{-\frac{2(a d-c b)}{d}} \operatorname{Ei}_{1}\left(2 b x+2 a-\frac{2(a d-c b)}{d}\right)}{3 d^{4}} \\
& \quad-\frac{b^{3} \mathrm{e}^{2 b x+2 a}}{12 d^{4}\left(\frac{b c}{d}+b x\right)^{3}}-\frac{b^{3} \mathrm{e}^{2 b x+2 a}}{12 d^{4}\left(\frac{b c}{d}+b x\right)^{2}}-\frac{b^{3} \mathrm{e}^{2 b x+2 a}}{6 d^{4}\left(\frac{b c}{d}+b x\right)}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{4} \sinh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 205 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{488 d^{4} \cosh (b x+a)}{27 b^{5}}-\frac{80 d^{2}(d x+c)^{2} \cosh (b x+a)}{9 b^{3}}-\frac{2(d x+c)^{4} \cosh (b x+a)}{3 b}+\frac{8 d^{4} \cosh (b x+a)^{3}}{81 b^{5}}+\frac{160 d^{3}(d x+c) \sinh (b x+a)}{9 b^{4}} \\
& +\frac{8 d(d x+c)^{3} \sinh (b x+a)}{3 b^{2}}+\frac{4 d^{2}(d x+c)^{2} \cosh (b x+a) \sinh (b x+a)^{2}}{9 b^{3}}+\frac{(d x+c)^{4} \cosh (b x+a) \sinh (b x+a)^{2}}{3 b} \\
& -\frac{8 d^{3}(d x+c) \sinh (b x+a)^{3}}{27 b^{4}}-\frac{4 d(d x+c)^{3} \sinh (b x+a)^{3}}{9 b^{2}} \\
& \text { Result(type 3, } 1216 \text { leaves): } \\
& \frac{1}{b}\left(\frac { 1 } { b ^ { 4 } } \left(d ^ { 4 } \left(-\frac{2(b x+a)^{4} \cosh (b x+a)}{3}+\frac{(b x+a)^{4} \cosh (b x+a) \sinh (b x+a)^{2}}{3}+\frac{28(b x+a)^{3} \sinh (b x+a)}{9}-\frac{80(b x+a)^{2} \cosh (b x+a)}{9}\right.\right.\right. \\
& +\frac{488(b x+a) \sinh (b x+a)}{27}-\frac{1456 \cosh (b x+a)}{81}-\frac{4(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{2}}{9}+\frac{4(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{9} \\
& \left.\left.-\frac{8(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{27}+\frac{8 \sinh (b x+a)^{2} \cosh (b x+a)}{81}\right)\right)-\frac{1}{b^{4}}\left(4 d ^ { 4 } a \left(-\frac{2(b x+a)^{3} \cosh (b x+a)}{3}\right.\right. \\
& +\frac{(b x+a)^{3} \cosh (b x+a) \sinh (b x+a)^{2}}{3}+\frac{7(b x+a)^{2} \sinh (b x+a)}{3}-\frac{40(b x+a) \cosh (b x+a)}{9}+\frac{122 \sinh (b x+a)}{27} \\
& \left.\left.-\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}+\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}-\frac{2 \sinh (b x+a) \cosh (b x+a)^{2}}{27}\right)\right) \\
& +\frac{1}{b^{4}}\left(6 d ^ { 4 } a ^ { 2 } \left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}\right.\right. \\
& \left.\left.+\frac{14(b x+a) \sinh (b x+a)}{9}+\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27}-\frac{40 \cosh (b x+a)}{27}\right)\right) \\
& -\frac{4 d^{4} a^{3}\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b^{4}} \\
& +\frac{d^{4} a^{4}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b^{4}}+\frac{1}{b^{3}}\left(4 c d ^ { 3 } \left(-\frac{2(b x+a)^{3} \cosh (b x+a)}{3}+\frac{(b x+a)^{3} \cosh (b x+a) \sinh (b x+a)^{2}}{3}\right.\right. \\
& +\frac{7(b x+a)^{2} \sinh (b x+a)}{3}-\frac{40(b x+a) \cosh (b x+a)}{9}+\frac{122 \sinh (b x+a)}{27}-\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}-\frac{2 \sinh (b x+a) \cosh (b x+a)^{2}}{27}\right)\right)-\frac{1}{b^{3}}\left(1 2 c d ^ { 3 } a \left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}\right.\right. \\
& -\frac{2(b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}+\frac{14(b x+a) \sinh (b x+a)}{9}+\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27} \\
& \left.\left.-\frac{40 \cosh (b x+a)}{27}\right)\right) \\
& +\frac{12 c d^{3} a^{2}\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b^{3}} \\
& -\frac{4 c d^{3} a^{3}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b^{3}}+\frac{1}{b^{2}}\left(6 c ^ { 2 } d ^ { 2 } \left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a)^{2} \cosh (b x+a)}{3}\right.\right. \\
& \left.\left.-\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}+\frac{14(b x+a) \sinh (b x+a)}{9}+\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27}-\frac{40 \cosh (b x+a)}{27}\right)\right) \\
& -\frac{12 c^{2} d^{2} a\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b^{2}} \\
& +\frac{6 c^{2} d^{2} a^{2}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b^{2}} \\
& +\frac{4 c^{3} d\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b} \\
& \left.-\frac{4 c^{3} d a\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b}+c^{4}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)\right)
\end{aligned}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3} \sinh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 161 leaves, 8 steps):
$-\frac{40 d^{2}(d x+c) \cosh (b x+a)}{9 b^{3}}-\frac{2(d x+c)^{3} \cosh (b x+a)}{3 b}+\frac{40 d^{3} \sinh (b x+a)}{9 b^{4}}+\frac{2 d(d x+c)^{2} \sinh (b x+a)}{b^{2}}$

$$
+\frac{2 d^{2}(d x+c) \cosh (b x+a) \sinh (b x+a)^{2}}{9 b^{3}}+\frac{(d x+c)^{3} \cosh (b x+a) \sinh (b x+a)^{2}}{3 b}-\frac{2 d^{3} \sinh (b x+a)^{3}}{27 b^{4}}-\frac{d(d x+c)^{2} \sinh (b x+a)^{3}}{3 b^{2}}
$$

$$
\begin{aligned}
& \text { Result(type 3, } 675 \text { leaves): } \\
& \frac{1}{b}\left(\frac { 1 } { b ^ { 3 } } \left(d ^ { 3 } \left(-\frac{2(b x+a)^{3} \cosh (b x+a)}{3}+\frac{(b x+a)^{3} \cosh (b x+a) \sinh (b x+a)^{2}}{3}+\frac{7(b x+a)^{2} \sinh (b x+a)}{3}-\frac{40(b x+a) \cosh (b x+a)}{9}\right.\right.\right. \\
& \left.\left.+\frac{122 \sinh (b x+a)}{27}-\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}+\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}-\frac{2 \sinh (b x+a) \cosh (b x+a)^{2}}{27}\right)\right) \\
& -\frac{1}{b^{3}}\left(3 d ^ { 3 } a \left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}\right.\right. \\
& \left.\left.+\frac{14(b x+a) \sinh (b x+a)}{9}+\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27}-\frac{40 \cosh (b x+a)}{27}\right)\right)+\frac{1}{b^{2}}\left(3 d ^ { 2 } c \left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}\right.\right. \\
& -\frac{2(b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}+\frac{14(b x+a) \sinh (b x+a)}{9}+\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27} \\
& \left.\left.-\frac{40 \cosh (b x+a)}{27}\right)\right) \\
& +\frac{3 d^{3} a^{2}\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b^{3}} \\
& -\frac{6 d^{2} a c\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b^{2}} \\
& +\frac{3 c^{2} d\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b} \\
& -\frac{d^{3} a^{3}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b^{3}}+\frac{3 d^{2} a^{2} c\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b^{2}} \\
& \left.-\frac{3 d a c^{2}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b}+c^{3}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)\right)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \sinh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 111 leaves, 6 steps):

$$
\begin{aligned}
& -\frac{14 d^{2} \cosh (b x+a)}{9 b^{3}}-\frac{2(d x+c)^{2} \cosh (b x+a)}{3 b}+\frac{2 d^{2} \cosh (b x+a)^{3}}{27 b^{3}}+\frac{4 d(d x+c) \sinh (b x+a)}{3 b^{2}}+\frac{(d x+c)^{2} \cosh (b x+a) \sinh (b x+a)^{2}}{3 b} \\
& -\frac{2 d(d x+c) \sinh (b x+a)^{3}}{9 b^{2}}
\end{aligned}
$$

Result(type 3, 319 leaves):

$$
\begin{aligned}
& \frac{1}{b}\left(\frac { 1 } { b ^ { 2 } } \left(d ^ { 2 } \left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a)^{2} \cosh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}\right.\right.\right. \\
&\left.\left.+\frac{14(b x+a) \sinh (b x+a)}{9}+\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27}-\frac{40 \cosh (b x+a)}{27}\right)\right) \\
&\left.-\frac{2 d^{2} a\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{b^{2}}\right) \\
&\left.+\frac{2 d c\left(-\frac{2(b x+a) \cosh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{7 \sinh (b x+a)}{9}-\frac{\sinh (b x+a) \cosh (b x+a)^{2}}{9}\right)}{9}\right) \\
&+\frac{d^{2} a^{2}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b^{2}}-\frac{2 d a c\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)}{b}+c^{2}\left(-\frac{2}{3}+\frac{\sinh (b x+a)^{2}}{3}\right) \cosh (b x+a)
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3} \operatorname{csch}(b x+a) \mathrm{d} x
$$

```
Optimal(type 4, 142 leaves, 9 steps):
\(-\frac{2(d x+c)^{3} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{3 d(d x+c)^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{3 d(d x+c)^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{6 d^{2}(d x+c) \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}\)
    \(-\frac{6 d^{2}(d x+c) \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 d^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{6 d^{3} \operatorname{polylog}\left(4, \mathrm{e}^{b x+a}\right)}{b^{4}}\)
```

Result(type 4, 540 leaves):
$\frac{3 c^{2} d \ln \left(1-\mathrm{e}^{b x+a}\right) a}{b^{2}}-\frac{3 c^{2} d \ln \left(1+\mathrm{e}^{b x+a}\right) x}{b}-\frac{3 c^{2} d \ln \left(1+\mathrm{e}^{b x+a}\right) a}{b^{2}}+\frac{3 d^{2} c \ln \left(1-\mathrm{e}^{b x+a}\right) x^{2}}{b}-\frac{3 d^{2} c \ln \left(1-\mathrm{e}^{b x+a}\right) a^{2}}{b^{3}}$

$$
\begin{aligned}
& +\frac{6 d^{2} c \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right) x}{b^{2}}-\frac{3 d^{2} c \ln \left(1+\mathrm{e}^{b x+a}\right) x^{2}}{b}+\frac{3 d^{2} c \ln \left(1+\mathrm{e}^{b x+a}\right) a^{2}}{b^{3}}-\frac{6 d^{2} c \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right) x}{b^{2}}+\frac{6 d a c^{2} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{2}} \\
& -\frac{6 d^{2} a^{2} c \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{3 c^{2} d \ln \left(1-\mathrm{e}^{b x+a}\right) x}{b}-\frac{2 c^{3} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{6 d^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{6 d^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{b x+a}\right)}{b^{4}} \\
& +\frac{6 d^{3} \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right) x}{b^{3}}-\frac{6 d^{2} c \operatorname{polylog}\left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{6 d^{2} c \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{3 c^{2} d \operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{3 c^{2} d \operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}} \\
& +\frac{2 d^{3} a^{3} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{d^{3} a^{3} \ln \left(1-\mathrm{e}^{b x+a}\right)}{b^{4}}-\frac{d^{3} a^{3} \ln \left(1+\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{d^{3} \ln \left(1-\mathrm{e}^{b x+a}\right) x^{3}}{b}+\frac{3 d^{3} \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right) x^{2}}{b^{2}} \\
& -\frac{6 d^{3} \operatorname{polylog}\left(3, \mathrm{e}^{b x+a}\right) x}{b^{3}}-\frac{d^{3} \ln \left(1+\mathrm{e}^{b x+a}\right) x^{3}}{b}-\frac{3 d^{3} \operatorname{poly\operatorname {log}(2,-\mathrm {e}^{bx+a})x^{2}}}{b^{2}}
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \operatorname{csch}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 74 leaves, 5 steps):

$$
-\frac{(d x+c)^{2}}{b}-\frac{(d x+c)^{2} \operatorname{coth}(b x+a)}{b}+\frac{2 d(d x+c) \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b^{2}}+\frac{d^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 b x+2 a}\right)}{b^{3}}
$$

Result(type 4, 239 leaves):

$$
\begin{aligned}
& -\frac{2\left(d^{2} x^{2}+2 c d x+c^{2}\right)}{b\left(\mathrm{e}^{2 b x+2 a}-1\right)}+\frac{2 d c \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{2}}-\frac{4 d c \ln \left(\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{2 d c \ln \left(1+\mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{2 d^{2} x^{2}}{b}-\frac{4 d^{2} a x}{b^{2}}-\frac{2 d^{2} a^{2}}{b^{3}}+\frac{2 d^{2} \ln \left(1-\mathrm{e}^{b x+a}\right) x}{b^{2}} \\
& \quad+\frac{2 d^{2} \ln \left(1-\mathrm{e}^{b x+a}\right) a}{b^{3}}+\frac{2 d^{2} \operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{2 d^{2} \ln \left(1+\mathrm{e}^{b x+a}\right) x}{b^{2}}+\frac{2 d^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{2 d^{2} a \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{3}}+\frac{4 d^{2} a \ln \left(\mathrm{e}^{b x+a}\right)}{b^{3}}
\end{aligned}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int(d x+c) \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 81 leaves, 6 steps):

$$
\frac{(d x+c) \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{d \operatorname{csch}(b x+a)}{2 b^{2}}-\frac{(d x+c) \operatorname{coth}(b x+a) \operatorname{csch}(b x+a)}{2 b}+\frac{d \operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{2 b^{2}}-\frac{d \operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{2 b^{2}}
$$

Result(type 4, 196 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{e}^{b x+a}\left(b d x \mathrm{e}^{2 b x+2 a}+b c \mathrm{e}^{2 b x+2 a}+b d x+d \mathrm{e}^{2 b x+2 a}+c b-d\right)}{b^{2}\left(\mathrm{e}^{2 b x+2 a}-1\right)^{2}}+\frac{c \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{d \ln \left(1-\mathrm{e}^{b x+a}\right) x}{2 b}-\frac{d \ln \left(1-\mathrm{e}^{b x+a}\right) a}{2 b^{2}} \\
& -\frac{d \operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{2 b^{2}}+\frac{d \ln \left(1+\mathrm{e}^{b x+a}\right) x}{2 b}+\frac{d a \ln \left(1+\mathrm{e}^{b x+a}\right)}{2 b^{2}}+\frac{d \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{2 b^{2}}-\frac{d a \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{2}}
\end{aligned}
$$

Problem 13: Unable to integrate problem.

$$
\int(d x+c)^{3 / 2} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 110 leaves, 7 steps):

$$
\frac{(d x+c)^{3 / 2} \cosh (b x+a)}{b}-\frac{3 d^{3 / 2} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{8 b^{5 / 2}}+\frac{3 d^{3 / 2} \mathrm{e}^{a-\frac{b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{8 b^{5 / 2}}-\frac{3 d \sinh (b x+a) \sqrt{d x+c}}{2 b^{2}}
$$

Result(type 8, 16 leaves):

$$
\int(d x+c)^{3 / 2} \sinh (b x+a) \mathrm{d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{\sinh (b x+a)}{\sqrt{d x+c}} \mathrm{~d} x
$$

Optimal(type 4, 74 leaves, 5 steps):

$$
-\frac{\mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{2 \sqrt{b} \sqrt{d}}+\frac{\mathrm{e}^{a-\frac{b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{2 \sqrt{b} \sqrt{d}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{\sinh (b x+a)}{\sqrt{d x+c}} \mathrm{~d} x
$$

Problem 15: Unable to integrate problem.

$$
\int(d x+c)^{5 / 2} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 183 leaves, 10 steps):
$-\frac{5 d(d x+c)^{3 / 2}}{16 b^{2}}-\frac{(d x+c)^{7 / 2}}{7 d}+\frac{(d x+c)^{5 / 2} \cosh (b x+a) \sinh (b x+a)}{2 b}-\frac{5 d(d x+c)^{3 / 2} \sinh (b x+a)^{2}}{8 b^{2}}$
$+\frac{15 d^{5 / 2} \mathrm{e}^{-2 a+\frac{2 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{2} \sqrt{\pi}}{512 b^{7 / 2}}-\frac{15 d^{5 / 2} \mathrm{e}^{2 a-\frac{2 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{2} \sqrt{\pi}}{512 b^{7 / 2}}+\frac{15 d^{2} \sinh (2 b x+2 a) \sqrt{d x+c}}{64 b^{3}}$
Result(type 8, 18 leaves):

$$
\int(d x+c)^{5 / 2} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.
$\int \sinh (b x+a)^{2} \sqrt{d x+c} \mathrm{~d} x$
Optimal(type 4, 122 leaves, 8 steps):

$$
-\frac{(d x+c)^{3 / 2}}{3 d}+\frac{\mathrm{e}^{-2 a+\frac{2 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{d} \sqrt{2} \sqrt{\pi}}{32 b^{3 / 2}}-\frac{\mathrm{e}^{2 a-\frac{2 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{d} \sqrt{2} \sqrt{\pi}}{32 b^{3 / 2}}+\frac{\sinh (2 b x+2 a) \sqrt{d x+c}}{4 b}
$$

Result(type 8, 18 leaves):

$$
\int \sinh (b x+a)^{2} \sqrt{d x+c} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{\sinh (b x+a)^{2}}{(d x+c)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 109 leaves, 7 steps):

$$
-\frac{\mathrm{e}^{-2 a+\frac{2 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{b} \sqrt{2} \sqrt{\pi}}{2 d^{3 / 2}}+\frac{\mathrm{e}^{2 a-\frac{2 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{b} \sqrt{2} \sqrt{\pi}}{2 d^{3 / 2}}-\frac{2 \sinh (b x+a)^{2}}{d \sqrt{d x+c}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{\sinh (b x+a)^{2}}{(d x+c)^{3 / 2}} \mathrm{~d} x
$$

Problem 18: Unable to integrate problem.

$$
\int \frac{\sinh (b x+a)^{3}}{\sqrt{d x+c}} \mathrm{~d} x
$$

Optimal(type 4, 162 leaves, 12 steps):

$$
-\frac{\mathrm{e}^{-3 a+\frac{3 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{24 \sqrt{b} \sqrt{d}}+\frac{\mathrm{e}^{3 a-\frac{3 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{24 \sqrt{b} \sqrt{d}}+\frac{3 \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{8 \sqrt{b} \sqrt{d}}
$$

$$
-\frac{3 \mathrm{e}^{a-\frac{b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{8 \sqrt{b} \sqrt{d}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{\sinh (b x+a)^{3}}{\sqrt{d x+c}} \mathrm{~d} x
$$

Problem 19: Unable to integrate problem.

$$
\int \frac{\sinh (b x+a)^{3}}{(d x+c)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 253 leaves, 19 steps):
$-\frac{4 b \cosh (b x+a) \sinh (b x+a)^{2}}{5 d^{2}(d x+c)^{3 / 2}}-\frac{2 \sinh (b x+a)^{3}}{5 d(d x+c)^{5 / 2}}-\frac{b^{5 / 2} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{5 d^{7 / 2}}-\frac{b^{5 / 2 \mathrm{e}^{a-\frac{b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}}{5 d^{7 / 2}}$

$$
+\frac{3 b^{5 / 2} \mathrm{e}^{-3 a+\frac{3 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{5 d^{7 / 2}}+\frac{3 b^{5 / 2} \mathrm{e}^{3 a-\frac{3 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{5 d^{7 / 2}}-\frac{16 b^{2} \sinh (b x+a)}{5 d^{3} \sqrt{d x+c}}
$$

$$
-\frac{24 b^{2} \sinh (b x+a)^{3}}{5 d^{3} \sqrt{d x+c}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{\sinh (b x+a)^{3}}{(d x+c)^{7 / 2}} \mathrm{~d} x
$$

Problem 23: Unable to integrate problem.

$$
\int\left(\frac{x}{\sinh (x)^{7 / 2}}+\frac{3 x \sqrt{\sinh (x)}}{5}\right) \mathrm{d} x
$$

Optimal(type 3, 31 leaves, 3 steps):

$$
-\frac{2 x \cosh (x)}{5 \sinh (x)^{5 / 2}}-\frac{4}{15 \sinh (x)^{3 / 2}}+\frac{6 x \cosh (x)}{5 \sqrt{\sinh (x)}}-\frac{12 \sqrt{\sinh (x)}}{5}
$$

Result(type 8, 16 leaves):

$$
\int\left(\frac{x}{\sinh (x)^{7 / 2}}+\frac{3 x \sqrt{\sinh (x)}}{5}\right) \mathrm{d} x
$$

Problem 24: Result unnecessarily involves higher level functions.

$$
\int x^{1+m} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 53 leaves, 3 steps):

$$
-\frac{\mathrm{e}^{a} x^{m} \Gamma(2+m,-b x)}{2 b^{2}(-b x)^{m}}+\frac{x^{m} \Gamma(2+m, b x)}{2 b^{2} \mathrm{e}^{a}(b x)^{m}}
$$

Result(type 5, 72 leaves):

$$
\frac{x^{2+m} \text { hypergeom }\left(\left[1+\frac{m}{2}\right],\left[\frac{1}{2}, 2+\frac{m}{2}\right], \frac{b^{2} x^{2}}{4}\right) \sinh (a)}{2+m}+\frac{b x^{3+m} \text { hypergeom }\left(\left[\frac{3}{2}+\frac{m}{2}\right],\left[\frac{3}{2}, \frac{5}{2}+\frac{m}{2}\right], \frac{b^{2} x^{2}}{4}\right) \cosh (a)}{3+m}
$$

Problem 25: Result unnecessarily involves higher level functions.
$\int x^{m} \sinh (b x+a) d x$
Optimal(type 4, 53 leaves, 3 steps):

$$
\frac{\mathrm{e}^{a} x^{m} \Gamma(1+m,-b x)}{2 b(-b x)^{m}}+\frac{x^{m} \Gamma(1+m, b x)}{2 b \mathrm{e}^{a}(b x)^{m}}
$$

Result(type 5, 72 leaves):

$$
\frac{x^{1+m} \text { hypergeom }\left(\left[\frac{1}{2}+\frac{m}{2}\right],\left[\frac{1}{2}, \frac{3}{2}+\frac{m}{2}\right], \frac{b^{2} x^{2}}{4}\right) \sinh (a)}{1+m}+\frac{b x^{2+m} \operatorname{hypergeom}\left(\left[1+\frac{m}{2}\right],\left[\frac{3}{2}, 2+\frac{m}{2}\right], \frac{b^{2} x^{2}}{4}\right) \cosh (a)}{2+m}
$$

Problem 26: Unable to integrate problem.

$$
\int x^{-3+m} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 82 leaves, 5 steps):

$$
\frac{x^{-2+m}}{2(2-m)}-\frac{b^{2} \mathrm{e}^{2 a} x^{m} \Gamma(-2+m,-2 b x)}{2^{m}(-b x)^{m}}-\frac{b^{2} x^{m} \Gamma(-2+m, 2 b x)}{2^{m} \mathrm{e}^{2 a}(b x)^{m}}
$$

Result(type 8, 16 leaves):

$$
\int x^{-3+m} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int\left(\frac{x}{\operatorname{csch}(x)^{3 / 2}}+\frac{x \sqrt{\operatorname{csch}(x)}}{3}\right) \mathrm{d} x
$$

Optimal(type 3, 16 leaves, 4 steps):

$$
-\frac{4}{9 \operatorname{csch}(x)^{3 / 2}}+\frac{2 x \cosh (x)}{3 \sqrt{\operatorname{csch}(x)}}
$$

Result(type 8, 16 leaves):

$$
\int\left(\frac{x}{\operatorname{csch}(x)^{3 / 2}}+\frac{x \sqrt{\operatorname{csch}(x)}}{3}\right) \mathrm{d} x
$$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+\mathrm{I} a \sinh (f x+e)}{(d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 119 leaves, 7 steps):

$$
-\frac{a}{2 d(d x+c)^{2}}-\frac{\mathrm{I} a f \cosh (f x+e)}{2 d^{2}(d x+c)}+\frac{\mathrm{I} a f^{2} \cosh \left(-e+\frac{c f}{d}\right) \operatorname{Shi}\left(\frac{c f}{d}+f x\right)}{2 d^{3}}-\frac{\mathrm{I} a f^{2} \operatorname{Chi}\left(\frac{c f}{d}+f x\right) \sinh \left(-e+\frac{c f}{d}\right)}{2 d^{3}}-\frac{\mathrm{I} a \sinh (f x+e)}{2 d(d x+c)^{2}}
$$

Result(type 4, 302 leaves):

$$
\begin{aligned}
& -\frac{a}{2 d(d x+c)^{2}}-\frac{\mathrm{I} a f^{3} \mathrm{e}^{-f x-e} x}{4 d\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)}-\frac{\mathrm{I} a f^{3} \mathrm{e}^{-f x-e} c}{4 d^{2}\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)}+\frac{\mathrm{I} a f^{2} \mathrm{e}^{-f x-e}}{4 d\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)} \\
& +\frac{\mathrm{I} a f^{2} \mathrm{e}^{\frac{c f-d e}{d}} \operatorname{Ei}_{1}\left(f x+e+\frac{c f-d e}{d}\right)}{4 d^{3}}-\frac{\mathrm{I} a f^{2} \mathrm{e}^{f x+e}}{4 d^{3}\left(\frac{c f}{d}+f x\right)^{2}}-\frac{\mathrm{I} a f^{2} \mathrm{e}^{f x+e}}{4 d^{3}\left(\frac{c f}{d}+f x\right)}-\frac{\mathrm{I} a f^{2} \mathrm{e}^{-\frac{c f-d e}{d}} \operatorname{Ei}_{1}\left(-f x-e-\frac{c f-d e}{d}\right)}{4 d^{3}}
\end{aligned}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3}(a+\mathrm{I} a \sinh (f x+e))^{2} \mathrm{~d} x
$$

Optimal(type 3, 227 leaves, 10 steps):
$\frac{3 a^{2} c d^{2} x}{4 f^{2}}+\frac{3 a^{2} d^{3} x^{2}}{8 f^{2}}+\frac{3 a^{2}(d x+c)^{4}}{8 d}+\frac{12 \mathrm{I} a^{2} d^{2}(d x+c) \cosh (f x+e)}{f^{3}}+\frac{2 \mathrm{I} a^{2}(d x+c)^{3} \cosh (f x+e)}{f}-\frac{12 \mathrm{I} a^{2} d^{3} \sinh (f x+e)}{f^{4}}$

$$
\begin{aligned}
& -\frac{6 \mathrm{I} a^{2} d(d x+c)^{2} \sinh (f x+e)}{f^{2}}-\frac{3 a^{2} d^{2}(d x+c) \cosh (f x+e) \sinh (f x+e)}{4 f^{3}}-\frac{a^{2}(d x+c)^{3} \cosh (f x+e) \sinh (f x+e)}{2 f}+\frac{3 a^{2} d^{3} \sinh (f x+e)^{2}}{8 f^{4}} \\
& +\frac{3 a^{2} d(d x+c)^{2} \sinh (f x+e)^{2}}{4 f^{2}}
\end{aligned}
$$

Result(type 3, 1081 leaves):
$\frac{1}{f}\left(\frac{6 \mathrm{I} c d^{2} e^{2} a^{2} \cosh (f x+e)}{f^{2}}-\frac{6 \mathrm{I} c^{2} d e a^{2} \cosh (f x+e)}{f}-\frac{12 \mathrm{I} c d^{2} e a^{2}((f x+e) \cosh (f x+e)-\sinh (f x+e))}{f^{2}}+\frac{c d^{2} a^{2}(f x+e)^{3}}{f^{2}}-\frac{d^{3} e^{3} a^{2}(f x+e)}{f^{3}}\right.$
$-\frac{3 d^{3} e^{2} a^{2}\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)}{f^{3}}$

$$
\begin{aligned}
& -\frac{3 c d^{2} a^{2}\left(\frac{(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{3}}{6}-\frac{(f x+e) \cosh (f x+e)^{2}}{2}+\frac{\cosh (f x+e) \sinh (f x+e)}{4}+\frac{f x}{4}+\frac{e}{4}\right)}{f^{2}} \\
& -\frac{3 c^{2} d a^{2}\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)}{f}+\frac{d^{3} e^{3} a^{2}\left(\frac{\cosh (f x+e) \sinh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)}{f^{3}} \\
& +\frac{2 \mathrm{I} d^{3} a^{2}\left((f x+e)^{3} \cosh (f x+e)-3(f x+e)^{2} \sinh (f x+e)+6(f x+e) \cosh (f x+e)-6 \sinh (f x+e)\right)}{f^{3}} \\
& +\frac{3 d^{3} e a^{2}\left(\frac{(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{3}}{6}-\frac{(f x+e) \cosh (f x+e)^{2}}{2}+\frac{\cosh (f x+e) \sinh (f x+e)}{4}+\frac{f x}{4}+\frac{e}{4}\right)}{f^{3}} \\
& +\frac{3 c^{2} d a^{2}(f x+e)^{2}}{2 f}-\frac{d^{3} e a^{2}(f x+e)^{3}}{f^{3}}+\frac{3 d^{3} e^{2} a^{2}(f x+e)^{2}}{2 f^{3}}+\frac{6 c d^{2} e a^{2}\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)}{4} \\
& -\frac{6 \mathrm{I} d^{3} e a^{2}\left((f x+e)^{2} \cosh (f x+e)-2(f x+e) \sinh (f x+e)+2 \cosh (f x+e)\right)}{f^{3}}+\frac{6 \mathrm{I} d^{3} e^{2} a^{2}((f x+e) \cosh (f x+e)-\sinh (f x+e))}{f^{3}} \\
& +\frac{6 \mathrm{I} c d^{2} a^{2}\left((f x+e)^{2} \cosh (f x+e)-2(f x+e) \sinh (f x+e)+2 \cosh (f x+e)\right)}{f^{2}}+\frac{6 \mathrm{I} c^{2} d a^{2}((f x+e) \cosh (f x+e)-\sinh (f x+e))}{f} \\
& +\frac{3 c d^{2} e^{2} a^{2}(f x+e)}{f^{2}}-\frac{3 c^{2} d e a^{2}(f x+e)}{f}-\frac{3 c d^{2} e a^{2}(f x+e)^{2}}{f^{2}}-\frac{3 c d^{2} e^{2} a^{2}\left(\frac{\cosh (f x+e) \sinh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)}{f^{2}} \\
& +\frac{3 c^{2} d e a^{2}\left(\frac{\cosh (f x+e) \sinh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)}{f}-\frac{2 \mathrm{I} d^{3} e^{3} a^{2} \cosh (f x+e)}{f^{3}}-c^{3} a^{2}\left(\frac{\cosh (f x+e) \sinh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)+c^{3} a^{2}(f x+e) \\
& -\frac{1}{f^{3}}\left(d ^ { 3 } a ^ { 2 } \left(\frac{(f x+e)^{3} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{4}}{8}-\frac{3(f x+e)^{2} \cosh (f x+e)^{2}}{4}+\frac{3(f x+e) \cosh (f x+e) \sinh (f x+e)}{4}\right.\right. \\
& \left.\left.\left.+\frac{3(f x+e)^{2}}{8}-\frac{3 \cosh (f x+e)^{2}}{8}\right)\right)+\frac{d^{3} a^{2}(f x+e)^{4}}{4 f^{3}}+2 \mathrm{I} c^{3} a^{2} \cosh (f x+e)\right)
\end{aligned}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{3}}{(a+\mathrm{I} a \sinh (f x+e))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 249 leaves, 10 steps):

$$
\begin{aligned}
& \frac{(d x+c)^{3}}{3 a^{2} f}-\frac{2 d(d x+c)^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{f x+e}\right)}{a^{2} f^{2}}+\frac{4 d^{3} \ln \left(\cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)\right)}{a^{2} f^{4}}-\frac{4 d^{2}(d x+c) \operatorname{poly\operatorname {log}(2,-\mathrm {I}\mathrm {e}^{fx+e})}}{a^{2} f^{3}}+\frac{4 d^{3} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{f x+e}\right)}{a^{2} f^{4}} \\
& \quad+\frac{d(d x+c)^{2} \operatorname{sech}\left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)^{2}}{2 a^{2} f^{2}}-\frac{2 d^{2}(d x+c) \tanh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{a^{2} f^{3}}+\frac{(d x+c)^{3} \tanh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{3 a^{2} f} \\
& \quad+\frac{(d x+c)^{3} \operatorname{sech}\left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)^{2} \tanh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{6 a^{2} f}
\end{aligned}
$$

Result(type 4, 722 leaves):

$$
\begin{aligned}
& \frac{1}{3\left(\mathrm{e}^{f x+e}-\mathrm{I}\right)^{3} f^{3} a^{2}}\left(2 \left(-\mathrm{I} f^{2} d^{3} x^{3}-6 \mathrm{I} c d^{2} \mathrm{e}^{2 f x+2 e}-3 f d^{3} x^{2} \mathrm{e}^{f x+e}-3 f c^{2} d \mathrm{e}^{f x+e}+3 f^{2} d^{3} x^{3} \mathrm{e}^{f x+e}-6 \mathrm{I} f c d^{2} x \mathrm{e}^{2 f x+2 e}+6 \mathrm{I} d^{3} x-6 \mathrm{I} d^{3} x \mathrm{e}^{2 f x+2 e}\right.\right. \\
& \\
& -12 d^{3} x \mathrm{e}^{f x+e}-12 c d^{2} \mathrm{e}^{f x+e}+3 f^{2} c^{3} \mathrm{e}^{f x+e}-3 \mathrm{I} f d^{3} x^{2} \mathrm{e}^{2 f x+2 e}+9 f^{2} c d^{2} x^{2} \mathrm{e}^{f x+e}+9 f^{2} c^{2} d x \mathrm{e}^{f x+e}-3 \mathrm{I} f^{2} c d^{2} x^{2}-3 \mathrm{I} f c^{2} d \mathrm{e}^{2 f x+2 e}-\mathrm{I} f^{2} c^{3} \\
& \\
& \left.\left.-3 \mathrm{I} f^{2} c^{2} d x-6 f c d^{2} x \mathrm{e}^{f x+e}+6 \mathrm{I} c d^{2}\right)\right)-\frac{2 d^{3} e^{2} x}{f^{2} a^{2}}+\frac{2 d^{2} c x^{2}}{f a^{2}}+\frac{2 d^{2} c e^{2}}{f^{3} a^{2}}-\frac{2 d^{3} \ln \left(1+\mathrm{I} \mathrm{e}^{f x+e}\right) x^{2}}{f^{2} a^{2}}-\frac{4 d^{3} \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{f x+e}\right) x}{f^{3} a^{2}} \\
& \\
& -\frac{4 d^{2} c \operatorname{polylog}\left(2,-\mathrm{Ie} \mathrm{e}^{f x+e}\right)}{f^{3} a^{2}}+\frac{4 d^{2} c e x}{f^{2} a^{2}}-\frac{4 d^{2} \ln (1+\mathrm{Ie} f x+e) c x}{f^{2} a^{2}}-\frac{4 d^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{f x+e}\right) c e}{f^{3} a^{2}}-\frac{4 d^{2} \ln \left(\mathrm{e}^{f x+e}\right) c e}{f^{3} a^{2}}+\frac{4 d^{2} \ln \left(\mathrm{e}^{f x+e}-\mathrm{I}\right) c e}{f^{3} a^{2}} \\
& \\
& +\frac{2 d^{3} \ln \left(1+\mathrm{I} \mathrm{e}^{f x+e}\right) e^{2}}{f^{4} a^{2}}+\frac{2 d^{3} x^{3}}{3 f a^{2}}+\frac{2 d \ln \left(\mathrm{e}^{f x+e}\right) c^{2}}{f^{2} a^{2}}-\frac{2 d^{3} \ln \left(\mathrm{e}^{f x+e}-\mathrm{I}\right) e^{2}}{f^{4} a^{2}}-\frac{2 d \ln \left(\mathrm{e}^{f x+e}-\mathrm{I}\right) c^{2}}{f^{2} a^{2}}+\frac{2 d^{3} \ln \left(\mathrm{e}^{f x+e}\right) e^{2}}{f^{4} a^{2}}-\frac{4 d^{3} e^{3}}{3 f^{4} a^{2}} \\
& +\frac{4 d^{3} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{f x+e}\right)}{a^{2} f^{4}}+\frac{4 d^{3} \ln \left(\mathrm{e}^{f x+e}-\mathrm{I}\right)}{f^{4} a^{2}}-\frac{4 d^{3} \ln \left(\mathrm{e}^{f x+e}\right)}{f^{4} a^{2}}
\end{aligned}
$$

Problem 36: Unable to integrate problem.

$$
\int \frac{\sqrt{a+\mathrm{I} a \sinh (f x+e)}}{x} \mathrm{~d} x
$$

Optimal(type 4, 85 leaves, 4 steps):

$$
\sinh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}\right) \operatorname{sech}\left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \operatorname{Shi}\left(\frac{f x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (f x+e)}+\operatorname{Chi}\left(\frac{f x}{2}\right) \operatorname{sech}\left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}\right) \sqrt{a+\mathrm{I} a \sinh (f x+e)}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\sqrt{a+\mathrm{I} a \sinh (f x+e)}}{x} \mathrm{~d} x
$$

Problem 37: Unable to integrate problem.

$$
\int \frac{\sqrt{a+\mathrm{I} a \sinh (f x+e)}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 145 leaves, 6 steps):
$-\frac{\sqrt{a+\mathrm{I} a \sinh (f x+e)}}{2 x^{2}}+\frac{f^{2} \sinh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}\right) \operatorname{sech}\left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \operatorname{Shi}\left(\frac{f x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (f x+e)}}{8}$

$$
+\frac{f^{2} \operatorname{Chi}\left(\frac{f x}{2}\right) \operatorname{sech}\left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}\right) \sqrt{a+\mathrm{I} a \sinh (f x+e)}}{8}-\frac{f \sqrt{a+\mathrm{I} a \sinh (f x+e)} \tanh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{4 x}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\sqrt{a+\mathrm{I} a \sinh (f x+e)}}{x^{3}} \mathrm{~d} x
$$

Problem 38: Unable to integrate problem.

$$
\int x^{2}(a+\mathrm{I} a \sinh (f x+e))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 224 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{32 a x \sqrt{a+\mathrm{I} a \sinh (f x+e)}}{3 f^{2}}-\frac{16 a x \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)^{2} \sqrt{a+\mathrm{I} a \sinh (f x+e)}}{9 f^{2}} \\
& +\frac{4 a x^{2} \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \sinh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (f x+e)}}{3 f}+\frac{224 a \sqrt{a+\mathrm{I} a \sinh (f x+e)} \tanh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{9 f^{3}} \\
& +\frac{8 a x^{2} \sqrt{a+\mathrm{I} a \sinh (f x+e)} \tanh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{3 f}+\frac{32 a \sinh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)^{2} \sqrt{a+\mathrm{I} a \sinh (f x+e)} \tanh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{27 f^{3}}
\end{aligned}
$$

Result(type 8, 20 leaves):

$$
\int x^{2}(a+\mathrm{I} a \sinh (f x+e))^{3 / 2} \mathrm{~d} x
$$

Problem 39: Unable to integrate problem.

$$
\int x^{2}(a+\mathrm{I} a \sinh (d x+c))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 3, 377 leaves, 10 steps):
$-\frac{256 a^{2} x \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{15 d^{2}}-\frac{128 a^{2} x \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{45 d^{2}}-\frac{32 a^{2} x \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{4} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{25 d^{2}}$
$+\frac{32 a^{2} x^{2} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \sinh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{15 d}$
$+\frac{8 a^{2} x^{2} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{3} \sinh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{5 d}+\frac{9536 a^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{225 d^{3}}$
$+\frac{64 a^{2} x^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{15 d}+\frac{2432 a^{2} \sinh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{675 d^{3}}$
$+\frac{64 a^{2} \sinh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{4} \sqrt{a+\mathrm{I} a \sinh (d x+c)} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{125 d^{3}}$
Result(type 8, 20 leaves):

$$
\int x^{2}(a+\mathrm{I} a \sinh (d x+c))^{5 / 2} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{(a+\mathrm{I} a \sinh (d x+c))^{5 / 2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 279 leaves, 12 steps):
$\frac{5 a^{2} \sinh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{Shi}\left(\frac{d x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{2}$
$+\frac{5 \mathrm{I} a^{2} \cosh \left(\frac{3 c}{2}+\frac{\mathrm{I} \pi}{4}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{Shi}\left(\frac{3 d x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{4}$
$-\frac{a^{2} \sinh \left(\frac{5 c}{2}+\frac{\mathrm{I} \pi}{4}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{Shi}\left(\frac{5 d x}{2}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{4}$
$-\frac{a^{2} \operatorname{Chi}\left(\frac{5 d x}{2}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \cosh \left(\frac{5 c}{2}+\frac{\mathrm{I} \pi}{4}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{4}$
$+\frac{5 a^{2} \operatorname{Chi}\left(\frac{d x}{2}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{2}$
$+\frac{5 \mathrm{I} a^{2} \operatorname{Chi}\left(\frac{3 d x}{2}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \sinh \left(\frac{3 c}{2}+\frac{\mathrm{I} \pi}{4}\right) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{4}$

Result(type 8, 20 leaves):

$$
\int \frac{(a+\mathrm{I} a \sinh (d x+c))^{5 / 2}}{x} \mathrm{~d} x
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{x^{2}}{(a+\mathrm{I} a \sinh (f x+e))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 374 leaves, 10 steps):

$$
\begin{aligned}
& \frac{2 x}{a f^{2} \sqrt{a+\mathrm{I} a \sinh (f x+e)}}-\frac{4 \arctan \left(\sinh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)\right) \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{a f^{3} \sqrt{a+\mathrm{I} a \sinh (f x+e)}}-\frac{\mathrm{I} x^{2} \operatorname{arctanh}\left(\mathrm{e}^{\left.\frac{e}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{f x}{2}\right)} \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right)\right.}{a f \sqrt{a+\mathrm{I} a \sinh (f x+e)}} \\
& +\frac{2 \mathrm{I} x \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \operatorname{polylog}\left(2, \mathrm{e}^{\frac{e}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{f x}{2}}\right)}{a f^{2} \sqrt{a+\mathrm{I} a \sinh (f x+e)}}-\frac{2 \mathrm{I} x \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \operatorname{polylog}\left(2,-\mathrm{e}^{\left.\frac{e}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{f x}{2}\right)}\right.}{a f^{2} \sqrt{a+\mathrm{I} a \sinh (f x+e)}} \\
& -\frac{4 \mathrm{I} \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \operatorname{polylog}\left(3, \mathrm{e}^{\frac{e}{2}}+\frac{3 \mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{a f^{3} \sqrt{a+\mathrm{I} a \sinh (f x+e)}}+\frac{4 \mathrm{I} \cosh \left(\frac{e}{2}+\frac{\mathrm{I} \pi}{4}+\frac{f x}{2}\right) \operatorname{polylog}\left(3,-\mathrm{e}^{\frac{e}{2}}+\frac{3 \mathrm{I} \pi}{4}+\frac{f x}{2}\right)}{a f^{3} \sqrt{a+\mathrm{I} a \sinh (f x+e)}} \\
& -
\end{aligned}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{2}}{(a+\mathrm{I} a \sinh (f x+e))^{3 / 2}} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{x^{2}}{(a+\mathrm{I} a \sinh (d x+c))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 500 leaves, 13 steps):
$\frac{3 x}{4 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}-\frac{5 \arctan \left(\sinh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)\right) \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{3 a^{2} d^{3} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}-\frac{3 \mathrm{I} x^{2} \operatorname{arctanh}\left(\mathrm{e}^{\left.\frac{c}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)\right.}{8 a^{2} d \sqrt{a+\mathrm{I} a \sinh (d x+c)}}$ $+\frac{3 \mathrm{I} x \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{polylog}\left(2, \mathrm{e}^{\left.\frac{c}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)}\right.}{4 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}-\frac{3 \mathrm{I} x \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{polylog}\left(2,-\mathrm{e}^{\left.\frac{c}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)}\right.}{4 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}$
$-\frac{3 \mathrm{I} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{polylog}\left(3, \mathrm{e}^{\left.\frac{c}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)}\right.}{2 a^{2} d^{3} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{3 \mathrm{I} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{polylog}\left(3,-\mathrm{e}^{\left.\frac{c}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)}\right.}{2 a^{2} d^{3} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{x \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{2}}{6 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}$
$-\frac{\tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{6 a^{2} d^{3} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{3 x^{2} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{16 a^{2} d \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{x^{2} \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{2} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{8 a^{2} d \sqrt{a+\mathrm{I} a \sinh (d x+c)}}$
Result(type 8, 20 leaves):

$$
\int \frac{x^{2}}{(a+\mathrm{I} a \sinh (d x+c))^{5 / 2}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{x}{(a+\mathrm{I} a \sinh (d x+c))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 302 leaves, 8 steps):
$\frac{3}{8 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}-\frac{3 \mathrm{I} x \operatorname{arctanh}\left(\mathrm{e}^{\left.\frac{c}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)\right.}{8 a^{2} d \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{3 \mathrm{I} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{polylog}\left(2, \mathrm{e}^{\frac{c}{2}}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{8 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}$
$-\frac{3 \mathrm{I} \cosh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right) \operatorname{polylog}\left(2,-\mathrm{e}^{\left.\frac{c}{2}+\frac{3 \mathrm{I} \pi}{4}+\frac{d x}{2}\right)}\right.}{8 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{\operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{2}}{12 a^{2} d^{2} \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{3 x \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{16 a^{2} d \sqrt{a+\mathrm{I} a \sinh (d x+c)}}$

$$
+\frac{x \operatorname{sech}\left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)^{2} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{8 a^{2} d \sqrt{a+\mathrm{I} a \sinh (d x+c)}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{x}{(a+\mathrm{I} a \sinh (d x+c))^{5 / 2}} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int(d x+c)^{m}(a+\mathrm{I} a \sinh (f x+e))^{3} \mathrm{~d} x
$$

Optimal(type 4, 390 leaves, 12 steps):

$$
\begin{aligned}
& \frac{5 a^{3}(d x+c)^{1+m}}{2 d(1+m)}-\frac{13^{-1-m} a^{3} \mathrm{e}^{3 e-\frac{3 c f}{d}}(d x+c)^{m} \Gamma\left(1+m,-\frac{3 f(d x+c)}{d}\right)}{8 f\left(-\frac{f(d x+c)}{d}\right)^{m}}-\frac{32^{-3-m} a^{3} \mathrm{e}^{2 e-\frac{2 c f}{d}}(d x+c)^{m} \Gamma\left(1+m,-\frac{2 f(d x+c)}{d}\right)}{f\left(-\frac{f(d x+c)}{d}\right)^{m}} \\
& +\frac{15 \mathrm{I} a^{3} \mathrm{e}^{e-\frac{c f}{d}}(d x+c)^{m} \Gamma\left(1+m,-\frac{f(d x+c)}{d}\right)}{8 f\left(-\frac{f(d x+c)}{d}\right)^{m}}+\frac{15 \mathrm{I} a^{3} \mathrm{e}^{-e+\frac{c f}{d}}(d x+c)^{m} \Gamma\left(1+m, \frac{f(d x+c)}{d}\right)}{8 f\left(\frac{f(d x+c)}{d}\right)^{m}} \\
& +\frac{32^{-3-m} a^{3} \mathrm{e}^{-2 e+\frac{2 c f}{d}}(d x+c)^{m} \Gamma\left(1+m, \frac{2 f(d x+c)}{d}\right)}{f\left(\frac{f(d x+c)}{d}\right)^{m}}-\frac{\mathrm{I} 3^{-1-m} a^{3} \mathrm{e}^{-3 e+\frac{3 c f}{d}}}{(d x+c)^{m} \Gamma\left(1+m, \frac{3 f(d x+c)}{d}\right)}
\end{aligned}
$$

Result(type 8, 24 leaves):

$$
\int(d x+c)^{m}(a+\mathrm{I} a \sinh (f x+e))^{3} \mathrm{~d} x
$$

Problem 49: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e)^{2} \sinh (d x+c)}{a+\mathrm{I} a \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 112 leaves, 8 steps):

$$
\frac{\mathrm{I}(f x+e)^{2}}{a d}-\frac{\mathrm{I}(f x+e)^{3}}{3 a f}-\frac{4 \mathrm{I} f(f x+e) \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{2}}-\frac{4 \mathrm{I} f^{2} \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{3}}+\frac{\mathrm{I}(f x+e)^{2} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{a d}
$$

Result(type 4, 268 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} x^{3} f^{2}}{3 a}-\frac{\mathrm{I} e f x^{2}}{a}-\frac{\mathrm{I} e^{2} x}{a}-\frac{2\left(x^{2} f^{2}+2 e f x+e^{2}\right)}{d a\left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}+\frac{4 \mathrm{I} \ln \left(\mathrm{e}^{d x+c}\right) e f}{a d^{2}}-\frac{4 \mathrm{I} \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right) e f}{a d^{2}}+\frac{2 \mathrm{I} f^{2} x^{2}}{a d}+\frac{4 \mathrm{I} f^{2} c x}{a d^{2}}+\frac{2 \mathrm{I} f^{2} c^{2}}{a d^{3}}-\frac{4 \mathrm{I} f^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) x}{a d^{2}} \\
& \quad-\frac{4 \mathrm{I} f^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) c}{a d^{3}}-\frac{4 \mathrm{I} f^{2} \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{4 \mathrm{I} f^{2} c \ln \left(\mathrm{e}^{d x+c}\right)}{a d^{3}}+\frac{4 \mathrm{I} f^{2} c \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{a d^{3}}
\end{aligned}
$$

Problem 53: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e)^{3} \operatorname{csch}(d x+c)}{a+\mathrm{I} a \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 288 leaves, 17 steps):
$-\frac{\mathrm{I}(f x+e)^{3}}{a d}-\frac{2(f x+e)^{3} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d}+\frac{6 \mathrm{I} f(f x+e)^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{2}}-\frac{3 f(f x+e)^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{12 \mathrm{I} f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{Ie} \mathrm{e}^{d x+c}\right)}{a d^{3}}$

$$
\begin{aligned}
& +\frac{3 f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{6 f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{12 \mathrm{I} f^{3} \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{4}}-\frac{6 f^{2}(f x+e) \operatorname{polylog}\left(3, \mathrm{e}^{d x+c}\right)}{a d^{3}} \\
& -\frac{6 f^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{d x+c}\right)}{a d^{4}}+\frac{6 f^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{d x+c}\right)}{a d^{4}}-\frac{\mathrm{I}(f x+e)^{3} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{a d}
\end{aligned}
$$

Result(type 4, 1033 leaves):
$-\frac{e^{3} \ln \left(1+\mathrm{e}^{d x+c}\right)}{a d}+\frac{e^{3} \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d}+\frac{6 e f^{2} \operatorname{polylog}\left(3,-\mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{f^{3} c^{3} \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d^{4}}-\frac{3 e^{2} f \operatorname{poly} \log \left(2,-\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{3 e^{2} f \mathrm{poly} \log \left(2, \mathrm{e}^{d x+c}\right)}{a d^{2}}$
$+\frac{4 \mathrm{I} f^{3} c^{3}}{a d^{4}}-\frac{2 \mathrm{I} f^{3} x^{3}}{a d}-\frac{6 e f^{2} \operatorname{poly} \log \left(3, \mathrm{e}^{d x+c}\right)}{a d^{3}}+\frac{f^{3} c^{3} \ln \left(1-\mathrm{e}^{d x+c}\right)}{a d^{4}}-\frac{f^{3} \ln \left(1+\mathrm{e}^{d x+c}\right) x^{3}}{a d}-\frac{3 f^{3} \operatorname{poly} \log \left(2,-\mathrm{e}^{d x+c}\right) x^{2}}{a d^{2}}$
$+\frac{6 f^{3} \operatorname{poly} \log \left(3,-\mathrm{e}^{d x+c}\right) x}{a d^{3}}+\frac{f^{3} \ln \left(1-\mathrm{e}^{d x+c}\right) x^{3}}{a d}+\frac{3 f^{3} \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right) x^{2}}{a d^{2}}-\frac{6 f^{3} \operatorname{poly} \log \left(3, \mathrm{e}^{d x+c}\right) x}{a d^{3}}+\frac{12 \mathrm{I} e f^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) x}{a d^{2}}$
$+\frac{12 \mathrm{I} e f^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) c}{a d^{3}}-\frac{12 \mathrm{I} e f^{2} c x}{a d^{2}}-\frac{12 \mathrm{I} e f^{2} c \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{a d^{3}}+\frac{12 \mathrm{I} e f^{2} c \ln \left(\mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{12 \mathrm{I} f^{3} \operatorname{poly} \log \left(3,-\mathrm{Ie} \mathrm{e}^{d x+c}\right)}{a d^{4}}-\frac{6 f^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{d x+c}\right)}{a d^{4}}$
$+\frac{6 f^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{d x+c}\right)}{a d^{4}}+\frac{3 e f^{2} c^{2} \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d^{3}}-\frac{3 c f e^{2} \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d^{2}}+\frac{6 \mathrm{I} f^{3} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) x^{2}}{a d^{2}}-\frac{6 \mathrm{I} f^{3} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) c^{2}}{a d^{4}}$
$+\frac{12 \mathrm{I} f^{3} \operatorname{polylog}\left(2,-\mathrm{Ie}{ }^{d x+c}\right) x}{a d^{3}}+\frac{6 \mathrm{I} f^{3} c^{2} x}{a d^{3}}-\frac{6 \mathrm{I} e f^{2} x^{2}}{a d}-\frac{6 \mathrm{I} e f^{2} c^{2}}{a d^{3}}+\frac{12 \mathrm{I} e f^{2} \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{6 \mathrm{I} f^{3} c^{2} \ln \left(\mathrm{e}^{d x+c}\right)}{a d^{4}}+\frac{6 \mathrm{I} f^{3} c^{2} \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{a d^{4}}$
$-\frac{6 \mathrm{I} e^{2} f \ln \left(\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{6 \mathrm{I} e^{2} f \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{a d^{2}}+\frac{3 \ln \left(1-\mathrm{e}^{d x+c}\right) c e^{2} f}{a d^{2}}+\frac{3 \ln \left(1-\mathrm{e}^{d x+c}\right) e^{2} f x}{a d}-\frac{3 \ln \left(1+\mathrm{e}^{d x+c}\right) e^{2} f x}{a d}+\frac{6 e f^{2} \mathrm{polylog}\left(2, \mathrm{e}^{d x+c}\right) x}{a d^{2}}$
$-\frac{3 e f^{2} \ln \left(1+\mathrm{e}^{d x+c}\right) x^{2}}{a d}-\frac{6 e f^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{d x+c}\right) x}{a d^{2}}+\frac{3 e f^{2} \ln \left(1-\mathrm{e}^{d x+c}\right) x^{2}}{a d}-\frac{3 e f^{2} \ln \left(1-\mathrm{e}^{d x+c}\right) c^{2}}{a d^{3}}+\frac{2\left(x^{3} f^{3}+3 e f^{2} x^{2}+3 e^{2} f x+e^{3}\right)}{d a\left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}$

Problem 56: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e)^{3} \operatorname{csch}(d x+c)^{3}}{a+\mathrm{I} a \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 504 leaves, 40 steps):

$$
\begin{aligned}
& \frac{\mathrm{I}(f x+e)^{3} \tanh \left(\frac{c}{2}+\frac{\mathrm{I} \pi}{4}+\frac{d x}{2}\right)}{a d}-\frac{6 f^{2}(f x+e) \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d^{3}}+\frac{3(f x+e)^{3} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d}+\frac{\mathrm{I}(f x+e)^{3} \operatorname{coth}(d x+c)}{a d} \\
& -\frac{3 f(f x+e)^{2} \operatorname{csch}(d x+c)}{2 a d^{2}}-\frac{(f x+e)^{3} \operatorname{coth}(d x+c) \operatorname{csch}(d x+c)}{2 a d}-\frac{6 \mathrm{I} f(f x+e)^{2} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{12 \mathrm{I} f^{3} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{4}} \\
& -\frac{3 f^{3} \operatorname{polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{a d^{4}}+\frac{9 f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{2 a d^{2}}+\frac{2 \mathrm{I}(f x+e)^{3}}{a d}+\frac{3 f^{3} \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{a d^{4}}-\frac{9 f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{2 a d^{2}} \\
& - \\
& -\frac{3 \mathrm{I} f(f x+e)^{2} \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a d^{2}}-\frac{9 f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{12 \mathrm{I} f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a d^{3}}+\frac{9 f^{2}(f x+e) \operatorname{polylog}\left(3, \mathrm{e}^{d x+c}\right)}{a d^{3}}
\end{aligned}
$$

$$
-\frac{3 \mathrm{I} f^{2}(f x+e) \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{a d^{3}}+\frac{9 f^{3} \operatorname{polylog}\left(4,-\mathrm{e}^{d x+c}\right)}{a d^{4}}-\frac{9 f^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{d x+c}\right)}{a d^{4}}+\frac{3 \mathrm{I} f^{3} \operatorname{polylog}\left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{4}}
$$

Result(type ?, 2057 leaves): Display of huge result suppressed!
Problem 59: Result more than twice size of optimal antiderivative.
$\int \frac{(f x+e) \sinh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x$
Optimal(type 4, 198 leaves, 10 steps):

$$
\begin{aligned}
& \frac{e x}{b}+\frac{f x^{2}}{2 b}-\frac{a(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b d \sqrt{a^{2}+b^{2}}}+\frac{a(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b d \sqrt{a^{2}+b^{2}}}-\frac{a f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b d^{2} \sqrt{a^{2}+b^{2}}} \\
& \quad+\frac{a f \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b d^{2} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 4, 439 leaves):

$$
\begin{aligned}
& \frac{f x^{2}}{2 b}+\frac{e x}{b}+\frac{2 a e \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b d \sqrt{a^{2}+b^{2}}}-\frac{a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b d \sqrt{a^{2}+b^{2}}}-\frac{a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b d^{2} \sqrt{a^{2}+b^{2}}} \\
& +\frac{a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b d \sqrt{a^{2}+b^{2}}}+\frac{a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b d^{2} \sqrt{a^{2}+b^{2}}} \\
& +\frac{a f \mathrm{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b d^{2} \sqrt{a^{2}+b^{2}}}-\frac{2 a c f \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b d^{2} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Problem 60: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \sinh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 509 leaves, 19 steps):

$$
-\frac{a(f x+e)^{4}}{4 b^{2} f}+\frac{6 f^{2}(f x+e) \cosh (d x+c)}{b d^{3}}+\frac{(f x+e)^{3} \cosh (d x+c)}{b d}-\frac{6 f^{3} \sinh (d x+c)}{b d^{4}}-\frac{3 f(f x+e)^{2} \sinh (d x+c)}{b d^{2}}
$$

$$
\begin{aligned}
& +\frac{a^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d \sqrt{a^{2}+b^{2}}}-\frac{a^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d \sqrt{a^{2}+b^{2}}}+\frac{3 a^{2} f(f x+e)^{2} \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}} \\
& -\frac{3 a^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} \sqrt{a^{2}+b^{2}}}-\frac{6 a^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{3} \sqrt{a^{2}+b^{2}}}+\frac{6 a^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{3} \sqrt{a^{2}+b^{2}}} \\
& +\frac{6 a^{2} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{4} \sqrt{a^{2}+b^{2}}}-\frac{6 a^{2} f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{4} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 314 leaves):

$$
\begin{aligned}
&-\frac{a\left(\frac{1}{4} x^{4} f^{3}+e f^{2} x^{3}+\frac{3}{2} e^{2} f x^{2}+e^{3} x\right)}{b^{2}}+\frac{\left(d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x-3 d^{2} f^{3} x^{2}+d^{3} e^{3}-6 d^{2} e f^{2} x-3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-6 f^{3}\right) \mathrm{e}^{d x+c}}{2 b d^{4}} \\
&+\frac{d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x+3 d^{2} f^{3} x^{2}+d^{3} e^{3}+6 d^{2} e f^{2} x+3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+6 f^{3}}{2 b d^{4} \mathrm{e}^{d x+c}}+\int \frac{2 a^{2}\left(x^{3} f^{3}+3 e f^{2} x^{2}+3 e^{2} f x+e^{3}\right) \mathrm{e}^{d x+c}}{b^{2}\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right)} \mathrm{d} x
\end{aligned}
$$

Problem 61: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \sinh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 242 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{a e x}{b^{2}}-\frac{a f x^{2}}{2 b^{2}}+\frac{(f x+e) \cosh (d x+c)}{b d}-\frac{f \sinh (d x+c)}{b d^{2}}+\frac{a^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d \sqrt{a^{2}+b^{2}}}-\frac{a^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d \sqrt{a^{2}+b^{2}}} \\
& \quad+\frac{a^{2} f \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a^{2} f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 4, 509 leaves):
$-\frac{a f x^{2}}{2 b^{2}}-\frac{a e x}{b^{2}}+\frac{(d f x+d e-f) \mathrm{e}^{d x+c}}{2 b d^{2}}+\frac{(d f x+d e+f) \mathrm{e}^{-d x-c}}{2 b d^{2}}-\frac{2 a^{2} e \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{2} d \sqrt{a^{2}+b^{2}}}+\frac{a^{2} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d \sqrt{a^{2}+b^{2}}}$

$$
\begin{aligned}
& +\frac{a^{2} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a^{2} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d \sqrt{a^{2}+b^{2}}}-\frac{a^{2} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}} \\
& +\frac{a^{2} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a^{2} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 a^{2} c f \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Problem 63: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \sinh (d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal (type 4, 656 leaves, 24 steps):

Result(type 8, 587 leaves):

$$
\frac{\frac{1}{2} a^{2} f^{3} x^{4}-\frac{1}{4} b^{2} f^{3} x^{4}+2 a^{2} e f^{2} x^{3}-b^{2} e f^{2} x^{3}+3 a^{2} e^{2} f x^{2}-\frac{3}{2} b^{2} e^{2} f x^{2}+2 a^{2} e^{3} x-b^{2} e^{3} x}{2 b^{3}}
$$

$$
+\frac{\left(4 d^{3} f^{3} x^{3}+12 d^{3} e f^{2} x^{2}+12 d^{3} e^{2} f x-6 d^{2} f^{3} x^{2}+4 d^{3} e^{3}-12 d^{2} e f^{2} x-6 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-3 f^{3}\right)\left(\mathrm{e}^{d x+c}\right)^{2}}{32 b d^{4}}
$$

$$
-\frac{a\left(d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x-3 d^{2} f^{3} x^{2}+d^{3} e^{3}-6 d^{2} e f^{2} x-3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-6 f^{3}\right) \mathrm{e}^{d x+c}}{2 d^{4} b^{2}}
$$

$$
\begin{aligned}
& -\frac{3 e f^{2} x}{4 b d^{2}}-\frac{3 f^{3} x^{2}}{8 b d^{2}}+\frac{a^{2}(f x+e)^{4}}{4 b^{3} f}-\frac{(f x+e)^{4}}{8 b f}-\frac{6 a f^{2}(f x+e) \cosh (d x+c)}{b^{2} d^{3}}-\frac{a(f x+e)^{3} \cosh (d x+c)}{b^{2} d}+\frac{6 a f^{3} \sinh (d x+c)}{b^{2} d^{4}} \\
& +\frac{3 a f(f x+e)^{2} \sinh (d x+c)}{b^{2} d^{2}}+\frac{3 f^{2}(f x+e) \cosh (d x+c) \sinh (d x+c)}{4 b d^{3}}+\frac{(f x+e)^{3} \cosh (d x+c) \sinh (d x+c)}{2 b d}-\frac{3 f^{3} \sinh (d x+c)^{2}}{8 b d^{4}} \\
& -\frac{3 f(f x+e)^{2} \sinh (d x+c)^{2}}{4 b d^{2}}-\frac{a^{3}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d \sqrt{a^{2}+b^{2}}}+\frac{a^{3}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d \sqrt{a^{2}+b^{2}}} \\
& -\frac{3 a^{3} f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{3 a^{3} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{6 a^{3} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{3} \sqrt{a^{2}+b^{2}}} \\
& -\frac{6 a^{3} f^{2}(f x+e) \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{3} \sqrt{a^{2}+b^{2}}}-\frac{6 a^{3} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{4} \sqrt{a^{2}+b^{2}}}+\frac{6 a^{3} f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{4} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a\left(d^{3} \rho^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x+3 d^{2} \rho^{3} x^{2}+d^{3} e^{3}+6 d^{2} e f^{2} x+3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+6 f^{3}\right)}{2 d^{4} b^{2} e^{d x+c}} \\
& -\frac{4 d^{3} f^{3} x^{3}+12 d^{3} e f^{2} x^{2}+12 d^{3} e^{2} f x+6 d^{2} \rho^{3} x^{2}+4 d^{3} e^{3}+12 d^{2} e f^{2} x+6 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+3 f^{3}}{32 b d^{4}\left(e^{d x+c}\right)^{2}}+\int \\
& -\frac{2 a^{3}\left(x^{3} f^{3}+3 e f^{2} x^{2}+3 e^{2} f x+e^{3}\right) e^{d x+c}}{\left(b\left(e^{d x+c}\right)^{2}+2 a e^{d x+c}-b\right) b^{3}} \mathrm{~d} x
\end{aligned}
$$

Problem 64: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \operatorname{csch}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 558 leaves, 22 steps):
$-\frac{2(f x+e)^{3} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d}-\frac{3 f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{3 f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{6 f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{e}^{d x+c}\right)}{a d^{3}}$

$$
-\frac{6 f^{2}(f x+e) \operatorname{poly} \log \left(3, \mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{6 f^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{d x+c}\right)}{a d^{4}}+\frac{6 f^{3} \operatorname{poly\operatorname {log}(4,\mathrm {e}^{dx+c})}}{a d^{4}}-\frac{b(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d \sqrt{a^{2}+b^{2}}}
$$

$$
+\frac{b(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d \sqrt{a^{2}+b^{2}}}-\frac{3 b f(f x+e)^{2} \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}+\frac{3 b f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}
$$

$$
+\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}}-\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}}-\frac{6 b f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d^{4} \sqrt{a^{2}+b^{2}}}
$$

$$
+\frac{6 b f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d^{4} \sqrt{a^{2}+b^{2}}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(f x+e)^{3} \operatorname{csch}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Problem 65: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \operatorname{csch}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 398 leaves, 18 steps):
$-\frac{2(f x+e)^{2} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d}-\frac{2 f(f x+e) \operatorname{poly} \log \left(2,-\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{2 f(f x+e) \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{2 f^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{d x+c}\right)}{a d^{3}}-\frac{2 f^{2} \operatorname{polylog}\left(3, \mathrm{e}^{d x+c}\right)}{a d^{3}}$

$$
-\frac{b(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d \sqrt{a^{2}+h^{2}}}+\frac{b(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}-\frac{2 b f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{}
$$

$$
+\frac{2 b f(f x+e) \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 b f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}}-\frac{2 b f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(f x+e)^{2} \operatorname{csch}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Problem 67: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \operatorname{csch}(d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 696 leaves, 29 steps):

$$
-\frac{(f x+e)^{3}}{a d}+\frac{2 b(f x+e)^{3} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a^{2} d}-\frac{(f x+e)^{3} \operatorname{coth}(d x+c)}{a d}+\frac{3 f(f x+e)^{2} \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a d^{2}}+\frac{3 b f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}
$$

$$
-\frac{3 b f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}+\frac{3 f^{2}(f x+e) \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{a d^{3}}-\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}+\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(3, \mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}
$$

$$
-\frac{3 f^{3} \operatorname{poly} \log \left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{4}}+\frac{6 b f^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}-\frac{6 b f^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}+\frac{b^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{a^{2}+b^{2}}}
$$

$$
-\frac{b^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{a^{2}+b^{2}}}+\frac{3 b^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{3 b^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{a^{2}+b^{2}}}
$$

$$
-\frac{6 b^{2} f^{2}(f x+e) \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{a^{2}+b^{2}}}+\frac{6 b^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{a^{2}+b^{2}}}+\frac{6 b^{2} f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{4} \sqrt{a^{2}+b^{2}}}
$$

$$
-\frac{6 b^{2} f^{3} \text { polylog }\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{4} \sqrt{a^{2}+b^{2}}}
$$

Result(type 8, 281 leaves):

$$
\begin{aligned}
& -\frac{2\left(x^{3} f^{3}+3 e f^{2} x^{2}+3 e^{2} f x+e^{3}\right)}{d a\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right)}+4\left(\int \frac { 1 } { 2 a d ( ( \mathrm { e } ^ { d x + c } ) ^ { 2 } - 1 ) ( b ( \mathrm { e } ^ { d x + c } ) ^ { 2 } + 2 a \mathrm { e } ^ { d x + c } - b ) } \left(-2 b d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{2}-6 b d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}\right.\right. \\
& \quad-6 b d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{2}+3 b f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+6 a f^{3} x^{2} \mathrm{e}^{d x+c}-2 b d e^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+6 b e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}+12 a e f^{2} x \mathrm{e}^{d x+c}+3 b e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}-3 b f^{3} x^{2} \\
& \left.\left.\quad+6 a e^{2} f \mathrm{e}^{d x+c}-6 b e f^{2} x-3 b e^{2} f\right) \mathrm{~d} x\right)
\end{aligned}
$$

Problem 69: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \operatorname{csch}(d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 386 leaves, 24 steps):
$\frac{(f x+e) \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d}-\frac{2 b^{2}(f x+e) \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a^{3} d}+\frac{b(f x+e) \operatorname{coth}(d x+c)}{a^{2} d}-\frac{f \operatorname{csch}(d x+c)}{2 a d^{2}}-\frac{(f x+e) \operatorname{coth}(d x+c) \operatorname{csch}(d x+c)}{2 a d}$
$-\frac{b f \ln (\sinh (d x+c))}{a^{2} d^{2}}+\frac{f \text { polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{2 a d^{2}}-\frac{b^{2} f \operatorname{poly} \log \left(2,-\mathrm{e}^{d x+c}\right)}{a^{3} d^{2}}-\frac{f \text { poly } \log \left(2, \mathrm{e}^{d x+c}\right)}{2 a d^{2}}+\frac{b^{2} f \operatorname{poly} \log \left(2, \mathrm{e}^{d x+c}\right)}{a^{3} d^{2}}$

$$
\begin{aligned}
& -\frac{b^{3}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d \sqrt{a^{2}+b^{2}}}+\frac{b^{3}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d \sqrt{a^{2}+b^{2}}}-\frac{b^{3} f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2} \sqrt{a^{2}+b^{2}}} \\
+ & \frac{b^{3} f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 4, 860 leaves):
$-\frac{a d f x \mathrm{e}^{3 d x+3 c}+a d e \mathrm{e}^{3 d x+3 c}-2 b d f x \mathrm{e}^{2 d x+2 c}+a d f x \mathrm{e}^{d x+c}+\mathrm{e}^{3 d x+3 c} a f-2 b d e \mathrm{e}^{2 d x+2 c}+a d e \mathrm{e}^{d x+c}+2 b d f x-a f \mathrm{e}^{d x+c}+2 b d e}{\left(\mathrm{e}^{2 d x+2 c}-1\right)^{2} a^{2} d^{2}}$

$$
\begin{aligned}
& -\frac{b^{2} e \ln \left(1+\mathrm{e}^{d x+c}\right)}{a^{3} d}-\frac{b^{2} c f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a^{3} d^{2}}-\frac{b^{3} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{b^{3} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d}+\frac{a^{3} d^{2} \sqrt{a^{2}+b^{2}}}{2 a d}+\frac{\ln \left(1+\mathrm{e}^{d x+c}\right) f x}{a^{2}}-\frac{e \ln \left(\mathrm{e}^{d x+c}-1\right)}{2 a d}+\frac{e \ln \left(1+\mathrm{e}^{d x+c}\right)}{2 a d}+\frac{c f \ln \left(\mathrm{e}^{d x+c}-1\right)}{2 a d^{2}}-\frac{b^{2} f \operatorname{dilog}\left(\mathrm{e}^{d x+c}\right)}{a^{3} d^{2}}-\frac{b^{2} f \operatorname{dilog}\left(1+\mathrm{e}^{d x+c}\right)}{a^{3} d^{2}} \\
& +\frac{b^{2} e \ln \left(\mathrm{e}^{d x+c}-1\right)}{a^{3} d \sqrt{a^{2}+b^{2}}} \\
& \left.+\frac{2 b^{3} e \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{a^{3}}-\frac{2 b^{3} c f \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{b^{3} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{a^{3} d^{2} \sqrt{a^{2}+b^{2}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{b^{3} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{a^{3} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{b^{2} f \ln \left(1+\mathrm{e}^{d x+c}\right) x}{a^{3} d}-\frac{b^{3} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{a^{3} d \sqrt{a^{2}+b^{2}}}+\frac{b^{3} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{a^{3} d \sqrt{a^{2}+b^{2}}} \\
& +\frac{f \operatorname{dilog}\left(\mathrm{e}^{d x+c}\right)}{2 a d^{2}}+\frac{f \operatorname{dilog}\left(1+\mathrm{e}^{d x+c}\right)}{2 a d^{2}}-\frac{b f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a^{2} d^{2}}-\frac{b f \ln \left(1+\mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}+\frac{2 b f \ln \left(\mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}
\end{aligned}
$$

Problem 71: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c)^{2}}{a+\mathrm{I} a \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 3, 102 leaves, 6 steps):

$$
\frac{(f x+e)^{4}}{4 a f}-\frac{6 \mathrm{I} f^{2}(f x+e) \cosh (d x+c)}{a d^{3}}-\frac{\mathrm{I}(f x+e)^{3} \cosh (d x+c)}{a d}+\frac{6 \mathrm{I} f^{3} \sinh (d x+c)}{a d^{4}}+\frac{3 \mathrm{I} f(f x+e)^{2} \sinh (d x+c)}{a d^{2}}
$$

Result(type 3, 447 leaves):
$-\frac{1}{d^{4} a}\left(-6 \mathrm{I} e d c f^{2}((d x+c) \cosh (d x+c)-\sinh (d x+c))+\mathrm{I} f^{3}\left((d x+c)^{3} \cosh (d x+c)-3(d x+c)^{2} \sinh (d x+c)+6(d x+c) \cosh (d x+c)\right.\right.$
$-6 \sinh (d x+c))-3 \mathrm{I} c f^{3}\left((d x+c)^{2} \cosh (d x+c)-2(d x+c) \sinh (d x+c)+2 \cosh (d x+c)\right)-3 \mathrm{I} e^{2} d^{2} c f \cosh (d x+c)+\mathrm{I} d^{3} e^{3} \cosh (d x+c)$
$+3 \mathrm{I} e d c^{2} f^{2} \cosh (d x+c)+3 \mathrm{I} e d f^{2}\left((d x+c)^{2} \cosh (d x+c)-2(d x+c) \sinh (d x+c)+2 \cosh (d x+c)\right)+3 \mathrm{I} e^{2} d^{2} f((d x+c) \cosh (d x+c)$
$-\sinh (d x+c))+3 \mathrm{I} c^{2} f^{3}((d x+c) \cosh (d x+c)-\sinh (d x+c))-\mathrm{I} c^{3} f^{3} \cosh (d x+c)-\frac{f^{3}(d x+c)^{4}}{4}+c f^{3}(d x+c)^{3}-d e f^{2}(d x+c)^{3}$
$\left.-\frac{3 c^{2} f^{3}(d x+c)^{2}}{2}+3 c d e f^{2}(d x+c)^{2}-\frac{3 d^{2} e^{2} f(d x+c)^{2}}{2}+c^{3} f^{3}(d x+c)-3 e d c^{2} f^{2}(d x+c)+3 e^{2} d^{2} c f(d x+c)-e^{3} d^{3}(d x+c)\right)$

Problem 77: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e)^{2} \operatorname{sech}(d x+c)^{3}}{a+\mathrm{I} a \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 373 leaves, 17 steps):
$\frac{3(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{4 a d}-\frac{5 f^{2} \arctan (\sinh (d x+c))}{6 a d^{3}}-\frac{\mathrm{I} f^{2} \operatorname{sech}(d x+c)^{2}}{12 a d^{3}}+\frac{\mathrm{I} f^{2} \ln (\cosh (d x+c))}{3 a d^{3}}-\frac{3 \mathrm{I} f^{2} \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{4 a d^{3}}$
$-\frac{\mathrm{I} f(f x+e) \tanh (d x+c)}{3 a d^{2}}+\frac{\mathrm{I}(f x+e)^{2} \operatorname{sech}(d x+c)^{4}}{4 a d}+\frac{3 f(f x+e) \operatorname{sech}(d x+c)}{4 a d^{2}}+\frac{3 \mathrm{I} f(f x+e) \operatorname{polylog}\left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{4 a d^{2}}+\frac{f(f x+e) \operatorname{sech}(d x+c)^{3}}{6 a d^{2}}$
$-\frac{\mathrm{I} f(f x+e) \operatorname{sech}(d x+c)^{2} \tanh (d x+c)}{6 a d^{2}}-\frac{3 \mathrm{I} f(f x+e) \operatorname{polylog}\left(2,-\mathrm{Ie} \mathrm{e}^{d x+c}\right)}{4 a d^{2}}-\frac{f^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{12 a d^{3}}$

$$
+\frac{3(f x+e)^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{8 a d}+\frac{3 \mathrm{I} f^{2} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{4 a d^{3}}+\frac{(f x+e)^{2} \operatorname{sech}(d x+c)^{3} \tanh (d x+c)}{4 a d}
$$

Result(type 4, 1043 leaves):

$$
\begin{aligned}
& \frac{1}{12\left(\mathrm{e}^{d x+c}+\mathrm{I}\right)^{2}\left(\mathrm{e}^{d x+c}-\mathrm{I}\right)^{4} d^{3} a}\left(18 d^{2} \text { efx } \mathrm{e}^{d x+c}-4 f^{2} \mathrm{e}^{3 d x+3 c}-2 f^{2} \mathrm{e}^{d x+c}+6 d^{2} e^{2} \mathrm{e}^{3 d x+3 c}+9 d^{2} e^{2} \mathrm{e}^{5 d x+5 c}+9 d^{2} f^{2} x^{2} \mathrm{e}^{d x+c}-2 d f^{2} x \mathrm{e}^{d x+c}\right. \\
& +16 d f^{2} x \mathrm{e}^{3 d x+3 c}+16 d e f \mathrm{e}^{3 d x+3 c}-8 \mathrm{I} d e f-8 \mathrm{I} d f^{2} x-44 \mathrm{I} d e f \mathrm{e}^{2 d x+2 c}-36 \mathrm{I} d f^{2} x \mathrm{e}^{4 d x+4 c}-36 \mathrm{I} d e f \mathrm{e}^{4 d x+4 c}+18 \mathrm{I} d^{2} f^{2} x^{2} \mathrm{e}^{2 d x+2 c} \\
& -44 \mathrm{I} d f^{2} x \mathrm{e}^{2 d x+2 c}+12 d^{2} \text { ef } x \mathrm{e}^{3 d x+3 c}+18 d^{2} \text { ef } x \mathrm{e}^{5 d x+5 c}-18 \mathrm{I} d^{2} f^{2} x^{2} \mathrm{e}^{4 d x+4 c}+9 d^{2} e^{2} \mathrm{e}^{d x+c}-18 \mathrm{I} d^{2} e^{2} \mathrm{e}^{4 d x+4 c}+18 \mathrm{I} d^{2} e^{2} \mathrm{e}^{2 d x+2 c} \\
& \left.+9 d^{2} f^{2} x^{2} \mathrm{e}^{5 d x+5 c}+6 d^{2} f^{2} x^{2} \mathrm{e}^{3 d x+3 c}+18 d f^{2} x \mathrm{e}^{5 d x+5 c}+18 d e f \mathrm{e}^{5 d x+5 c}-2 f^{2} \mathrm{e}^{5 d x+5 c}+36 \mathrm{I} d^{2} e f x \mathrm{e}^{2 d x+2 c}-36 \mathrm{I} d^{2} e f x \mathrm{e}^{4 d x+4 c}-2 d e f \mathrm{e}^{d x+c}\right) \\
& -\frac{2 \mathrm{I} f^{2} \ln \left(\mathrm{e}^{d x+c}\right)}{3 a d^{3}}-\frac{3 \mathrm{I} f^{2} \text { poly } \log \left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{4 a d^{3}}-\frac{3 \mathrm{I} e f \text { polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{4 a d^{2}}+\frac{3 \mathrm{I} p o l y \log \left(2, \mathrm{I} \mathrm{e}^{d x+c}\right) f^{2} x}{4 a d^{2}}-\frac{\mathrm{I} f^{2} \ln \left(\mathrm{e}^{d x+c}+\mathrm{I}\right)}{2 a d^{3}} \\
& +\frac{3 \mathrm{I} \ln \left(1-\mathrm{I} \mathrm{e}^{d x+c}\right) e f x}{4 a d}+\frac{7 \mathrm{I} f^{2} \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{6 a d^{3}}+\frac{3 \mathrm{I} e f \operatorname{poly} \log \left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{4 a d^{2}}+\frac{3 \mathrm{I} f^{2} \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{4 a d^{3}}+\frac{3 \mathrm{I} \ln \left(1-\mathrm{Ie} \mathrm{e}^{d x+c}\right) c e f}{4 a d^{2}} \\
& +\frac{3 \mathrm{I} \ln \left(1-\mathrm{Ie}{ }^{d x+c}\right) f^{2} x^{2}}{8 a d}-\frac{3 \mathrm{I} \ln \left(1-\mathrm{Ie}{ }^{d x+c}\right) c^{2} f^{2}}{8 a d^{3}}+\frac{3 \mathrm{I} e^{2} \ln \left(\mathrm{e}^{d x+c}+\mathrm{I}\right)}{8 a d}-\frac{3 \mathrm{I} \ln \left(1+\mathrm{Ie}{ }^{d x+c}\right) e f x}{4 a d}-\frac{3 \mathrm{I} c f e \ln \left(\mathrm{e}^{d x+c}+\mathrm{I}\right)}{4 a d^{2}} \\
& -\frac{3 \mathrm{I} \operatorname{poly} \log \left(2,-\mathrm{Ie}^{d x+c}\right) f^{2} x}{4 a d^{2}}-\frac{3 \mathrm{I} \ln \left(1+\mathrm{I}^{d x+c}\right) c e f}{4 a d^{2}}+\frac{3 \mathrm{I} \ln \left(1+\mathrm{Ie}^{d x+c}\right) c^{2} f^{2}}{8 a d^{3}}-\frac{3 \mathrm{I} \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) f^{2} x^{2}}{8 a d}+\frac{3 \mathrm{I} c f e \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{4 a d^{2}} \\
& +\frac{3 \mathrm{I} c^{2} f^{2} \ln \left(\mathrm{e}^{d x+c}+\mathrm{I}\right)}{8 a d^{3}}-\frac{3 \mathrm{I} e^{2} \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{8 a d}-\frac{3 \mathrm{I} c^{2} f^{2} \ln \left(\mathrm{e}^{d x+c}-\mathrm{I}\right)}{8 a d^{3}}
\end{aligned}
$$

Problem 78: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 330 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{(f x+e)^{4}}{4 b f}+\frac{(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b d}+\frac{(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b d}+\frac{3 f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b d^{2}} \\
& +\frac{3 f(f x+e)^{2} \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b d^{2}}-\frac{6 f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b-\frac{b f^{2}(f x+e) \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b d^{3}}} \\
& \quad+\frac{6 f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b d^{4}}+\frac{6 f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b d^{4}}
\end{aligned}
$$

Result(type 8, 157 leaves):

$$
\frac{\frac{1}{4} x^{4} f^{3}+e f^{2} x^{3}+\frac{3}{2} e^{2} f x^{2}+e^{3} x}{b}+\int-\frac{2\left(a f^{3} x^{3} \mathrm{e}^{d x+c}+3 a e f^{2} x^{2} \mathrm{e}^{d x+c}-b f^{3} x^{3}+3 a e^{2} f x \mathrm{e}^{d x+c}-3 b e f^{2} x^{2}+a e^{3} \mathrm{e}^{d x+c}-3 b e^{2} f x-b e^{3}\right)}{b\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right)} \mathrm{d} x
$$

Problem 79: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \cosh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 357 leaves, 15 steps):

$$
\begin{aligned}
& -\frac{a(f x+e)^{3}}{3 b^{2} f}+\frac{2 f^{2} \cosh (d x+c)}{b d^{3}}+\frac{(f x+e)^{2} \cosh (d x+c)}{b d}-\frac{2 f(f x+e) \sinh (d x+c)}{b d^{2}}+\frac{(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{2} d} \\
& -\frac{(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{2} d}+\frac{2 f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{2} d^{2}} \\
& -\frac{2 f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{2} d^{2}} \\
& -\frac{2 f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{2} d^{3}}
\end{aligned}
$$

Result(type 8, 232 leaves):

$$
\begin{aligned}
& -\frac{a\left(\frac{1}{3} x^{3} f^{2}+e f x^{2}+e^{2} x\right)}{b^{2}}+\frac{\left(d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}-2 d f^{2} x-2 e f d+2 f^{2}\right) \mathrm{e}^{d x+c}}{2 d^{3} b}+\frac{d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}+2 d f^{2} x+2 e f d+2 f^{2}}{2 d^{3} b \mathrm{e}^{d x+c}}+ \\
& \int \frac{2\left(a^{2} f^{2} x^{2}+b^{2} f^{2} x^{2}+2 a^{2} e f x+2 b^{2} e f x+a^{2} e^{2}+b^{2} e^{2}\right) \mathrm{e}^{d x+c}}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b^{2}} \mathrm{~d} x
\end{aligned}
$$

Problem 80: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 604 leaves, 21 steps):

$$
\left.\begin{array}{rl}
\frac{3 f^{3} x}{8 b d^{3}} & +\frac{(f x+e)^{3}}{4 b d}-\frac{\left(a^{2}+b^{2}\right)(f x+e)^{4}}{4 b^{3} f}+\frac{6 a f^{3} \cosh (d x+c)}{b^{2} d^{4}}+\frac{3 a f(f x+e)^{2} \cosh (d x+c)}{b^{2} d^{2}}+\frac{\left(a^{2}+b^{2}\right)(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d} \\
+ & \left(a^{2}+b^{2}\right)(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \\
b^{3} d
\end{array}+\frac{3\left(a^{2}+b^{2}\right) f(f x+e)^{2} \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2}}\right) .
$$

$$
\begin{aligned}
& \left.\frac{3\left(a^{2}+b^{2}\right) f(f x+e)^{2} \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2}}-\frac{6\left(a^{2}+b^{2}\right) f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3}}\right) \\
- & \frac{6\left(a^{2}+b^{2}\right) f^{2}(f x+e) \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3}}+\frac{6\left(a^{2}+b^{2}\right) f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{4}}+\frac{6\left(a^{2}+b^{2}\right) f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{4}}
\end{aligned}
$$

$$
-\frac{6 a f^{2}(f x+e) \sinh (d x+c)}{b^{2} d^{3}}-\frac{a(f x+e)^{3} \sinh (d x+c)}{b^{2} d}-\frac{3 f^{3} \cosh (d x+c) \sinh (d x+c)}{8 b d^{4}}-\frac{3 f(f x+e)^{2} \cosh (d x+c) \sinh (d x+c)}{4 b d^{2}}
$$

$$
+\frac{3 f^{2}(f x+e) \sinh (d x+c)^{2}}{4 b d^{3}}+\frac{(f x+e)^{3} \sinh (d x+c)^{2}}{2 b d}
$$

Result(type 8, 763 leaves):
$\frac{1}{4} a^{2} f^{3} x^{4}+\frac{1}{4} b^{2} f^{3} x^{4}+a^{2} e f^{2} x^{3}+b^{2} e f^{2} x^{3}+\frac{3}{2} a^{2} e^{2} f x^{2}+\frac{3}{2} b^{2} e^{2} f x^{2}+a^{2} e^{3} x+b^{2} e^{3} x$
$b^{3}$

$$
\begin{aligned}
& +\frac{\left(4 d^{3} f^{3} x^{3}+12 d^{3} e f^{2} x^{2}+12 d^{3} e^{2} f x-6 d^{2} f^{3} x^{2}+4 e^{3} d^{3}-12 d^{2} e f^{2} x-6 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-3 f^{3}\right)\left(\mathrm{e}^{d x+c}\right)^{2}}{32 b d^{4}} \\
& -\frac{a\left(d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x-3 d^{2} f^{3} x^{2}+e^{3} d^{3}-6 d^{2} e f^{2} x-3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-6 f^{3}\right) \mathrm{e}^{d x+c}}{2 d^{4} b^{2}} \\
& +\frac{a\left(d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x+3 d^{2} f^{3} x^{2}+e^{3} d^{3}+6 d^{2} e f^{2} x+3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+6 f^{3}\right)}{2 d^{4} b^{2} \mathrm{e}^{d x+c}} \\
& +\frac{4 d^{3} f^{3} x^{3}+12 d^{3} e f^{2} x^{2}+12 d^{3} e^{2} f x+6 d^{2} f^{3} x^{2}+4 e^{3} d^{3}+12 d^{2} e f^{2} x+6 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+3 f^{3}}{32 b d^{4}\left(\mathrm{e}^{d x+c}\right)^{2}}+\int
\end{aligned}
$$

$$
-\frac{1}{b^{3}\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right)}\left(2 \left(a^{3} f^{3} x^{3} \mathrm{e}^{d x+c}+a b^{2} f^{3} x^{3} \mathrm{e}^{d x+c}+3 a^{3} e f^{2} x^{2} \mathrm{e}^{d x+c}-a^{2} b f^{3} x^{3}+3 a b^{2} e f^{2} x^{2} \mathrm{e}^{d x+c}-b^{3} f^{3} x^{3}+3 a^{3} e^{2} f x \mathrm{e}^{d x+c}\right.\right.
$$

$$
\left.\left.-3 a^{2} b e f^{2} x^{2}+3 a b^{2} e^{2} f x \mathrm{e}^{d x+c}-3 b^{3} e f^{2} x^{2}+a^{3} e^{3} \mathrm{e}^{d x+c}-3 a^{2} b e^{2} f x+a b^{2} e^{3} \mathrm{e}^{d x+c}-3 b^{3} e^{2} f x-a^{2} b e^{3}-b^{3} e^{3}\right)\right) \mathrm{d} x
$$

Problem 81: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{3}}{a+b \sinh (d x+c)} d x
$$

Optimal(type 3, 57 leaves, 3 steps):

$$
\frac{\left(a^{2}+b^{2}\right) \ln (a+b \sinh (d x+c))}{b^{3} d}-\frac{a \sinh (d x+c)}{b^{2} d}+\frac{\sinh (d x+c)^{2}}{2 b d}
$$

Result(type 3, 290 leaves):

$$
\begin{aligned}
& \frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}+\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}+\frac{a}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) a^{2}}{d b^{3}} \\
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d b}+\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}-\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{2} \\
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) a^{2}}{d b^{3}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d b}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right) a^{2}}{d b^{3}} \\
& +\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right)}{d b}
\end{aligned}
$$

Problem 82: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \operatorname{sech}(d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 725 leaves, 29 steps):

$$
\begin{aligned}
& \frac{a(f x+e)^{3}}{\left(a^{2}+b^{2}\right) d}-\frac{6 b f(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}-\frac{3 a f(f x+e)^{2} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}+\frac{b^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d} \\
& -\frac{b^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d}-\frac{6 \mathrm{I} b f^{2}(f x+e) \operatorname{polylog}\left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{3}}+\frac{6 \mathrm{I} b f^{3} \operatorname{polylog}\left(3, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{4}}-\frac{3 a f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{\left(a^{2}+b^{2}\right) d^{3}} \\
& +\frac{3 b^{2} f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{3 b^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{6 \mathrm{I} b f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{Ie} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{3}} \\
& -\frac{6 \mathrm{I} b f^{3} \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{4}}+\frac{3 a f^{3} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2\left(a^{2}+b^{2}\right) d^{4}}-\frac{6 b^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& +\frac{6 b^{2} f^{2}(f x+e) \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}+\frac{6 b^{2} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}-\frac{6 b^{2} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}
\end{aligned}
$$

$$
+\frac{b(f x+e)^{3} \operatorname{sech}(d x+c)}{\left(a^{2}+b^{2}\right) d}+\frac{a(f x+e)^{3} \tanh (d x+c)}{\left(a^{2}+b^{2}\right) d}
$$

Result(type 8, 491 leaves):

$$
\begin{aligned}
& -\frac{2\left(f^{3} x^{3}+3 e f^{2} x^{2}+3 e^{2} f x+e^{3}\right)\left(-\mathrm{e}^{d x+c} b+a\right)}{d\left(a^{2}+b^{2}\right)\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)}+4\left(\int \frac { 1 } { 2 d ( a ^ { 2 } + b ^ { 2 } ) ( ( \mathrm { e } ^ { d x + c } ) ^ { 2 } + 1 ) ( b ( \mathrm { e } ^ { d x + c } ) ^ { 2 } + 2 a \mathrm { e } ^ { d x + c } - b ) } \left(b^{2} d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}\right.\right. \\
& \quad+3 b^{2} d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3}+b^{2} d f^{3} x^{3} \mathrm{e}^{d x+c}-3 b^{2} f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}-3 a b f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+b^{2} d e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} d e f^{2} x^{2} \mathrm{e}^{d x+c} \\
& -6 b^{2} e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{3}+6 a^{2} f^{3} x^{2} \mathrm{e}^{d x+c}-6 a b e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}+3 b^{2} d e^{2} f x \mathrm{e}^{d x+c}-3 b^{2} e^{2} f\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} f^{3} x^{2} \mathrm{e}^{d x+c}+12 a^{2} e f^{2} x \mathrm{e}^{d x+c} \\
& \left.\left.-3 a b e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}-3 a b f^{3} x^{2}+b^{2} d e^{3} \mathrm{e}^{d x+c}+6 b^{2} e f^{2} x \mathrm{e}^{d x+c}+6 a^{2} e^{2} f \mathrm{e}^{d x+c}-6 a b e f^{2} x+3 b^{2} e^{2} f \mathrm{e}^{d x+c}-3 a b e^{2} f\right) \mathrm{~d} x\right)
\end{aligned}
$$

Problem 84: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{3}}{a+b \sinh (d x+c)} d x
$$

Optimal(type 3, 115 leaves, 7 steps):

$$
\frac{a\left(a^{2}+3 b^{2}\right) \arctan (\sinh (d x+c))}{2\left(a^{2}+b^{2}\right)^{2} d}-\frac{b^{3} \ln (\cosh (d x+c))}{\left(a^{2}+b^{2}\right)^{2} d}+\frac{b^{3} \ln (a+b \sinh (d x+c))}{\left(a^{2}+b^{2}\right)^{2} d}+\frac{\operatorname{sech}(d x+c)^{2}(b+a \sinh (d x+c))}{2\left(a^{2}+b^{2}\right) d}
$$

Result(type 3, 467 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a^{3}}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} b^{2} a}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b^{3}}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{3}}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}} \frac{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}{d \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2} a}-\frac{b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}+\frac{\arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a^{3}}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)} \\
& +\frac{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}{d \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b^{2} a}+\frac{b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right)}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}
\end{aligned}
$$

[^0]$$
\int \frac{(f x+e) \cosh (d x+c)}{(a+b \sinh (d x+c))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 106 leaves, 6 steps):


Result(type 3, 307 leaves):
$-\frac{2 a^{2} d f x \mathrm{e}^{2 d x+2 c}+2 b^{2} d f x \mathrm{e}^{2 d x+2 c}+2 a^{2} d e \mathrm{e}^{2 d x+2 c}-\mathrm{e}^{3 d x+3 c} a b f+2 b^{2} d e \mathrm{e}^{2 d x+2 c}-2 \mathrm{e}^{2 d x+2 c} a^{2} f+b^{2} f \mathrm{e}^{2 d x+2 c}+3 a b f \mathrm{e}^{d x+c}-b^{2} f}{b d^{2}\left(a^{2}+b^{2}\right)\left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)^{2}}$

$$
+\frac{f a \ln \left(\mathrm{e}^{d x+c}+\frac{a\left(a^{2}+b^{2}\right)^{3 / 2}-a^{4}-2 b^{2} a^{2}-b^{4}}{\left(a^{2}+b^{2}\right)^{3 / 2} b}\right)}{2\left(a^{2}+b^{2}\right)^{3 / 2} d^{2} b}-\frac{f a \ln \left(\mathrm{e}^{d x+c}+\frac{a\left(a^{2}+b^{2}\right)^{3 / 2}+a^{4}+2 b^{2} a^{2}+b^{4}}{\left(a^{2}+b^{2}\right)^{3 / 2} b}\right)}{2\left(a^{2}+b^{2}\right)^{3 / 2} d^{2} b}
$$

Problem 86: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \cosh (d x+c)}{(a+b \sinh (d x+c))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 106 leaves, 6 steps):

$$
-\frac{a f \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{-f x-e}{2 b d(a+b \sinh (d x+c))^{2}}-\frac{f \cosh (d x+c)}{2\left(a^{2}+b^{2}\right) d^{2}(a+b \sinh (d x+c))}
$$

Result(type 3, 307 leaves):
$-\frac{2 a^{2} d f x \mathrm{e}^{2 d x+2 c}+2 b^{2} d f x \mathrm{e}^{2 d x+2 c}+2 a^{2} d e \mathrm{e}^{2 d x+2 c}-\mathrm{e}^{3 d x+3 c} a b f+2 b^{2} d e \mathrm{e}^{2 d x+2 c}-2 \mathrm{e}^{2 d x+2 c} a^{2} f+b^{2} f \mathrm{e}^{2 d x+2 c}+3 a b f \mathrm{e}^{d x+c}-b^{2} f}{b d^{2}\left(a^{2}+b^{2}\right)\left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)^{2}}$

$$
+\frac{f a \ln \left(\mathrm{e}^{d x+c}+\frac{a\left(a^{2}+b^{2}\right)^{3 / 2}-a^{4}-2 b^{2} a^{2}-b^{4}}{\left(a^{2}+b^{2}\right)^{3 / 2} b}\right)}{2\left(a^{2}+b^{2}\right)^{3 / 2} d^{2} b}-\frac{f a \ln \left(\mathrm{e}^{d x+c}+\frac{a\left(a^{2}+b^{2}\right)^{3 / 2}+a^{4}+2 b^{2} a^{2}+b^{4}}{\left(a^{2}+b^{2}\right)^{3 / 2} b}\right)}{2\left(a^{2}+b^{2}\right)^{3 / 2} d^{2} b}
$$

Problem 87: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c)}{(a+b \sinh (d x+c))^{3}} \mathrm{~d} x
$$

Optimal(type 4, 579 leaves, 19 steps):
$-\frac{3 f(f x+e)^{2}}{2 b\left(a^{2}+b^{2}\right) d^{2}}+\frac{3 f^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}+\frac{3 a f(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{2 b\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{3 f^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}$

$$
\begin{aligned}
& \frac{3 a f(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{2 b\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{3 f^{3} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right) d^{4}}+\frac{3 a f^{2}(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
+ & \frac{3 f^{3} \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right) d^{4}}-\frac{3 a f^{2}(f x+e) \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}-\frac{3 a f^{3} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}} \\
+ & 3 a f^{3} \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \\
+ & \frac{(f x+e)^{3}}{2 b d(a+b \sinh (d x+c))^{2}}-\frac{3 f(f x+e)^{2} \cosh (d x+c)}{2\left(a^{2}+b^{2}\right) d^{2}(a+b \sinh (d x+c))}
\end{aligned}
$$

Result(type 8, 554 leaves):

$$
\begin{aligned}
& -\frac{1}{b d^{2}\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right)^{2}\left(a^{2}+b^{2}\right)}\left(2 a^{2} d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+2 b^{2} d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+6 a^{2} d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-3 a b f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}\right. \\
& +6 b^{2} d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+6 a^{2} d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{2}-6 a^{2} f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-6 a b e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{3}+6 b^{2} d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{2}+3 b^{2} f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2} \\
& +2 a^{2} d e^{3}\left(\mathrm{e}^{d x+c}\right)^{2}-12 a^{2} e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}-3 a b e^{2} f\left(\mathrm{e}^{d x+c}\right)^{3}+9 a b f^{3} x^{2} \mathrm{e}^{d x+c}+2 b^{2} d e^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+6 b^{2} e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}-6 a^{2} e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2} \\
& \left.+18 a b e f^{2} x \mathrm{e}^{d x+c}+3 b^{2} e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}-3 b^{2} f^{3} x^{2}+9 a b e^{2} f \mathrm{e}^{d x+c}-6 b^{2} e f^{2} x-3 b^{2} e^{2} f\right)+ \\
& \int \frac{3 f\left(a d f^{2} x^{2} \mathrm{e}^{d x+c}+2 a d e f x \mathrm{e}^{d x+c}+a d e^{2} \mathrm{e}^{d x+c}-2 a f^{2} x \mathrm{e}^{d x+c}-2 a e f \mathrm{e}^{d x+c}+2 b f^{2} x+2 b e f\right)}{b d^{2}\left(a^{2}+b^{2}\right)\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right)} \mathrm{d} x
\end{aligned}
$$

Problem 88: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c) \sinh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 422 leaves, 16 steps):

$$
\begin{aligned}
& \frac{a(f x+e)^{4}}{4 b^{2} f}-\frac{6 f^{3} \cosh (d x+c)}{b d^{4}}-\frac{3 f(f x+e)^{2} \cosh (d x+c)}{b d^{2}}-\frac{a(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d}-\frac{a(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d} \\
& -\frac{3 a f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}-\frac{3 a f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}+\frac{6 a f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{3}} \\
& +\frac{6 a f^{2}(f x+e) \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{3}}-\frac{6 a f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{4}}-\frac{6 a f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{4}} \\
& +\frac{6 f^{2}(f x+e) \sinh (d x+c)}{b d^{3}}+\frac{(f x+e)^{3} \sinh (d x+c)}{b d}
\end{aligned}
$$

Result(type 8, 368 leaves):

$$
-\frac{a\left(\frac{1}{4} x^{4} f^{3}+e f^{2} x^{3}+\frac{3}{2} e^{2} f x^{2}+e^{3} x\right)}{b^{2}}+\frac{\left(d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x-3 d^{2} f^{3} x^{2}+e^{3} d^{3}-6 d^{2} e f^{2} x-3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-6 f^{3}\right) \mathrm{e}^{d x+c}}{2 b d^{4}}
$$

$$
-\frac{d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x+3 d^{2} f^{3} x^{2}+e^{3} d^{3}+6 d^{2} e f^{2} x+3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+6 f^{3}}{2 b d^{4} \mathrm{e}^{d x+c}}+
$$

$$
\int \frac{2 a\left(a f^{3} x^{3} \mathrm{e}^{d x+c}+3 a e f^{2} x^{2} \mathrm{e}^{d x+c}-b f^{3} x^{3}+3 a e^{2} f x \mathrm{e}^{d x+c}-3 b e f^{2} x^{2}+a e^{3} \mathrm{e}^{d x+c}-3 b e^{2} f x-b e^{3}\right)}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b^{2}} \mathrm{~d} x
$$

Problem 89: Result more than twice size of optimal antiderivative.
$\int \frac{(f x+e) \cosh (d x+c) \sinh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x$
Optimal(type 4, 198 leaves, 10 steps):

$$
\begin{aligned}
& \frac{a(f x+e)^{2}}{2 b^{2} f}-\frac{f \cosh (d x+c)}{b d^{2}}-\frac{a(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d}-\frac{a(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d}-\frac{a f \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}} \\
& \quad-\frac{a f \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}+\frac{(f x+e) \sinh (d x+c)}{b d}
\end{aligned}
$$

Result(type 4, 482 leaves):

$$
\begin{aligned}
\frac{a f x^{2}}{2 b^{2}} & -\frac{a e x}{b^{2}}+\frac{(d f x+d e-f) \mathrm{e}^{d x+c}}{2 b d^{2}}-\frac{(d f x+d e+f) \mathrm{e}^{-d x-c}}{2 b d^{2}}-\frac{2 a f c \ln \left(\mathrm{e}^{d x+c}\right)}{b^{2} d^{2}}+\frac{a f c \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{2} d^{2}}+\frac{2 a e \ln \left(\mathrm{e}^{d x+c}\right)}{b^{2} d} \\
& \left.-\frac{a e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{2} d}+\frac{2 a f c x}{b^{2} d}+\frac{a f c^{2}}{b^{2} d^{2}}-\frac{a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x \quad a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{b^{2} d}\right) c}{-a+\sqrt{a^{2}+b^{2}}}\right) \\
& \left.-\frac{a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x \quad a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{b^{2} d}\right) c \quad a f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}-\frac{a+\sqrt{a^{2}+b^{2}}}{b^{2} d^{2}}\right) \\
& \left.-\frac{a f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}\right)
\end{aligned}
$$

Problem 91: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \cosh (d x+c)^{2} \sinh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 468 leaves, 20 steps):

$$
\begin{aligned}
& \frac{f^{2} x}{4 b d^{2}}+\frac{a^{2}(f x+e)^{3}}{3 b^{3} f}+\frac{(f x+e)^{3}}{6 b f}-\frac{2 a f^{2} \cosh (d x+c)}{b^{2} d^{3}}-\frac{a(f x+e)^{2} \cosh (d x+c)}{b^{2} d}-\frac{f(f x+e) \cosh (d x+c)^{2}}{2 b d^{2}}+\frac{2 a f(f x+e) \sinh (d x+c)}{b^{2} d^{2}} \\
& +\frac{f^{2} \cosh (d x+c) \sinh (d x+c)}{4 b d^{3}}+\frac{(f x+e)^{2} \cosh (d x+c) \sinh (d x+c)}{2 b d}-\frac{a(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{3} d} \\
& \quad+\frac{a(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{3} d}-\frac{2 a f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{3} d^{2}} \\
& \quad+\frac{2 a f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{3} d^{2}} \\
& \quad-\frac{2 a f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{3} d^{3}} \\
& \quad-\frac{2 a f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{3} d^{3}}
\end{aligned}
$$

Result(type 8, 391 leaves):

$$
\begin{aligned}
& \frac{\frac{2}{3} a^{2} f^{2} x^{3}+\frac{1}{3} b^{2} f^{2} x^{3}+2 a^{2} e f x^{2}+b^{2} e f x^{2}+2 a^{2} e^{2} x+b^{2} e^{2} x}{2 b^{3}}+\frac{\left(2 d^{2} f^{2} x^{2}+4 d^{2} e f x+2 d^{2} e^{2}-2 d f^{2} x-2 e f d+f^{2}\right)\left(\mathrm{e}^{d x+c}\right)^{2}}{16 b d^{3}} \\
& -\frac{a\left(d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}-2 d f^{2} x-2 e f d+2 f^{2}\right) \mathrm{e}^{d x+c}}{2 b^{2} d^{3}}-\frac{a\left(d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}+2 d f^{2} x+2 e f d+2 f^{2}\right)}{2 b^{2} d^{3} \mathrm{e}^{d x+c}} \\
& -\frac{2 d^{2} f^{2} x^{2}+4 d^{2} e f x+2 d^{2} e^{2}+2 d f^{2} x+2 e f d+f^{2}}{16 b d^{3}\left(\mathrm{e}^{d x+c}\right)^{2}}+\int-\frac{2 a\left(a^{2} f^{2} x^{2}+b^{2} f^{2} x^{2}+2 a^{2} e f x+2 b^{2} e f x+a^{2} e^{2}+b^{2} e^{2}\right) \mathrm{e}^{d x+c}}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b^{3}} \mathrm{~d} x
\end{aligned}
$$

Problem 92: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c)^{3} \sinh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 812 leaves, 30 steps):
$-\frac{3 a\left(a^{2}+b^{2}\right) f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}-\frac{3 a\left(a^{2}+b^{2}\right) f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}$

$$
\begin{aligned}
& +\frac{6 a\left(a^{2}+b^{2}\right) f^{2}(f x+e) \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{3}}+\frac{6 a\left(a^{2}+b^{2}\right) f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{3}} \\
& +\frac{3 a f(f x+e)^{2} \cosh (d x+c) \sinh (d x+c)}{4 b^{2} d^{2}}+\frac{a^{2}(f x+e)^{3} \sinh (d x+c)}{b^{3} d}-\frac{a\left(a^{2}+b^{2}\right)(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d} \\
& -\frac{a\left(a^{2}+b^{2}\right)(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d}-\frac{6 a\left(a^{2}+b^{2}\right) f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{4}}-\frac{6 a\left(a^{2}+b^{2}\right) f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{4}} \\
& -\frac{40 f^{3} \cosh (d x+c)}{9 b d^{4}}-\frac{a(f x+e)^{3}}{4 b^{2} d}-\frac{2 f^{3} \cosh (d x+c)^{3}}{27 b d^{4}}+\frac{2(f x+e)^{3} \sinh (d x+c)}{3 b d}+\frac{a\left(a^{2}+b^{2}\right)(f x+e)^{4}}{4 b^{4} f}-\frac{6 a^{2} f^{3} \cosh (d x+c)}{b^{3} d^{4}} \\
& -\frac{f(f x+e)^{2} \cosh (d x+c)^{3}}{3 b d^{2}}+\frac{(f x+e)^{3} \cosh (d x+c)^{2} \sinh (d x+c)}{3 b d}-\frac{a(f x+e)^{3} \sinh (d x+c)^{2}}{2 b^{2} d}-\frac{2 f(f x+e)^{2} \cosh (d x+c)}{b d^{2}} \\
& +\frac{40 f^{2}(f x+e) \sinh (d x+c)}{9 b d^{3}}-\frac{3 a f^{3} x}{8 b^{2} d^{3}}-\frac{3 a^{2} f(f x+e)^{2} \cosh (d x+c)}{b^{3} d^{2}}+\frac{6 a^{2} f^{2}(f x+e) \sinh (d x+c)}{b^{3} d^{3}}+\frac{3 a f^{3} \cosh (d x+c) \sinh (d x+c)}{8 b^{2} d^{4}} \\
& +\frac{2 f^{2}(f x+e) \cosh (d x+c)^{2} \sinh (d x+c)}{9 b d^{3}}-\frac{3 a f^{2}(f x+e) \sinh (d x+c)^{2}}{4 b^{2} d^{3}}
\end{aligned}
$$

Result(type 8, 1143 leaves):

$$
\begin{aligned}
& -\frac{a\left(\frac{1}{4} a^{2} f^{3} x^{4}+\frac{1}{4} b^{2} f^{3} x^{4}+a^{2} e f^{2} x^{3}+b^{2} e f^{2} x^{3}+\frac{3}{2} a^{2} e^{2} f x^{2}+\frac{3}{2} b^{2} e^{2} f x^{2}+a^{2} e^{3} x+b^{2} e^{3} x\right)}{b^{4}} \\
& \quad+\frac{\left(9 d^{3} f^{3} x^{3}+27 d^{3} e f^{2} x^{2}+27 d^{3} e^{2} f x-9 d^{2} f^{3} x^{2}+9 e^{3} d^{3}-18 d^{2} e f^{2} x-9 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-2 f^{3}\right)\left(\mathrm{e}^{d x+c}\right)^{3}}{216 b d^{4}} \\
& \quad-\frac{a\left(4 d^{3} f^{3} x^{3}+12 d^{3} e f^{2} x^{2}+12 d^{3} e^{2} f x-6 d^{2} f^{3} x^{2}+4 e^{3} d^{3}-12 d^{2} e f^{2} x-6 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-3 f^{3}\right)\left(\mathrm{e}^{d x+c}\right)^{2}}{32 b^{2} d^{4}}+\frac{1}{8 b^{3} d^{4}}\left(\left(4 a^{2} d^{3} f^{3} x^{3}\right.\right. \\
& \\
& \quad+3 b^{2} d^{3} f^{3} x^{3}+12 a^{2} d^{3} e f^{2} x^{2}+9 b^{2} d^{3} e f^{2} x^{2}+12 a^{2} d^{3} e^{2} f x-12 a^{2} d^{2} f^{3} x^{2}+9 b^{2} d^{3} e^{2} f x-9 b^{2} d^{2} f^{3} x^{2}+4 a^{2} d^{3} e^{3}-24 a^{2} d^{2} e f^{2} x+3 b^{2} d^{3} e^{3} \\
& \\
& \left.\left.-18 b^{2} d^{2} e f^{2} x-12 a^{2} d^{2} e^{2} f+24 a^{2} d f^{3} x-9 b^{2} d^{2} e^{2} f+18 b^{2} d f^{3} x+24 a^{2} d e f^{2}+18 b^{2} d e f^{2}-24 a^{2} f^{3}-18 b^{2} f^{3}\right) \mathrm{e}^{d x+c}\right) \\
& \\
& -\frac{\left(4 a^{2}+3 b^{2}\right)\left(d^{3} f^{3} x^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x+3 d^{2} f^{3} x^{2}+e^{3} d^{3}+6 d^{2} e f^{2} x+3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+6 f^{3}\right)}{8 b^{3} d^{4} \mathrm{e}^{d x+c}} \\
& \\
& -\frac{a\left(4 d^{3} f^{3} x^{3}+12 d^{3} e f^{2} x^{2}+12 d^{3} e^{2} f x+6 d^{2} f^{3} x^{2}+4 e^{3} d^{3}+12 d^{2} e f^{2} x+6 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+3 f^{3}\right)}{32 b^{2} d^{4}\left(\mathrm{e}^{d x+c}\right)^{2}} \\
& -\frac{9 d^{3} f^{3} x^{3}+27 d^{3} e f^{2} x^{2}+27 d^{3} e^{2} f x+9 d^{2} f^{3} x^{2}+9 e^{3} d^{3}+18 d^{2} e f^{2} x+9 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+2 f^{3}}{216 b d^{4}\left(\mathrm{e}^{d x+c}\right)^{3}}+
\end{aligned}
$$

$\int \frac{1}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b^{4}}\left(2 a\left(a^{3} f^{3} x^{3} \mathrm{e}^{d x+c}+a b^{2} f^{3} x^{3} \mathrm{e}^{d x+c}+3 a^{3} e f^{2} x^{2} \mathrm{e}^{d x+c}-a^{2} b f^{3} x^{3}+3 a b^{2} e f^{2} x^{2} \mathrm{e}^{d x+c}-b^{3} f^{3} x^{3}+3 a^{3} e^{2} f x \mathrm{e}^{d x+c}\right.\right.$
$\left.\left.-3 a^{2} b e f^{2} x^{2}+3 a b^{2} e^{2} f x \mathrm{e}^{d x+c}-3 b^{3} e f^{2} x^{2}+a^{3} e^{3} \mathrm{e}^{d x+c}-3 a^{2} b e^{2} f x+a b^{2} e^{3} \mathrm{e}^{d x+c}-3 b^{3} e^{2} f x-a^{2} b e^{3}-b^{3} e^{3}\right)\right) \mathrm{d} x$

Problem 93: Result more than twice size of optimal antiderivative.
$\int \frac{(f x+e) \cosh (d x+c)^{3} \sinh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x$
Optimal(type 4, 372 leaves, 17 steps):

$$
\begin{aligned}
& -\frac{a f x}{4 b^{2} d}+\frac{a\left(a^{2}+b^{2}\right)(f x+e)^{2}}{2 b^{4} f}-\frac{a^{2} f \cosh (d x+c)}{b^{3} d^{2}}-\frac{2 f \cosh (d x+c)}{3 b d^{2}}-\frac{f \cosh (d x+c)^{3}}{9 b d^{2}}-\frac{a\left(a^{2}+b^{2}\right)(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d} \\
& \quad-\frac{a\left(a^{2}+b^{2}\right)(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d}-\frac{a\left(a^{2}+b^{2}\right) f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}-\frac{a\left(a^{2}+b^{2}\right) f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}} \\
& \quad+\frac{a^{2}(f x+e) \sinh (d x+c)}{b^{3} d}+\frac{2(f x+e) \sinh (d x+c)}{3 b d}+\frac{a f \cosh (d x+c) \sinh (d x+c)}{4 b^{2} d^{2}}+\frac{(f x+e) \cosh (d x+c)^{2} \sinh (d x+c)}{3 b d} \\
& \quad-\frac{a(f x+e) \sinh (d x+c)^{2}}{2 b^{2} d}
\end{aligned}
$$

Result(type 4, 1101 leaves):
$-\frac{a^{3} e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{4} d}-\frac{a^{3} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}-\frac{a^{3} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}+\frac{2 a^{3} e \ln \left(\mathrm{e}^{d x+c}\right)}{b^{4} d}+\frac{a^{3} f c^{2}}{b^{4} d^{2}}$

$$
-\frac{a(2 d f x+2 d e-f) \mathrm{e}^{2 d x+2 c}}{16 b^{2} d^{2}}-\frac{\left(4 a^{2}+3 b^{2}\right)(d f x+d e+f) \mathrm{e}^{-d x-c}}{8 b^{3} d^{2}}-\frac{a(2 d f x+2 d e+f) \mathrm{e}^{-2 d x-2 c}}{16 b^{2} d^{2}}-\frac{a e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{2} d}
$$

$$
-\frac{a f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}-\frac{a f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}+\frac{a f c^{2}}{b^{2} d^{2}}+\frac{2 a e \ln \left(\mathrm{e}^{d x+c}\right)}{b^{2} d}+\frac{a^{3} f x^{2}}{2 b^{4}}+\frac{a f x^{2}}{2 b^{2}}-\frac{a^{3} e x}{b^{4}}-\frac{a e x}{b^{2}}
$$

$$
+\frac{2 a f c x}{b^{2} d}-\frac{2 a f c \ln \left(\mathrm{e}^{d x+c}\right)}{b^{2} d^{2}}+\frac{a f c \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{2} d^{2}}-\frac{a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d}-\frac{a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2}}
$$

$$
-\frac{a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d}-\frac{a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2}}+\frac{(3 d f x+3 d e-f) \mathrm{e}^{3 d x+3 c}}{72 d^{2} b}-\frac{(3 d f x+3 d e+f) \mathrm{e}^{-3 d x-3 c}}{72 d^{2} b}
$$

$$
\begin{aligned}
& +\frac{2 a^{3} f c x}{b^{4} d}-\frac{a^{3} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{4} d}-\frac{a^{3} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{4} d^{2}}-\frac{a^{3} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{4} d} \\
& \left.-\frac{a^{3} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{4} d^{2}}\right) \\
& +\frac{\left(4 a^{2} d f x+3 b^{2} d f x+4 a^{2} d e+3 b^{2} d e-4 a^{2} f-3 b^{2} f\right) \mathrm{e}^{d x+c}}{8 b^{3} d^{2}}
\end{aligned}
$$

Problem 95: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \tanh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 953 leaves, 39 steps):
$\frac{3 \mathrm{I} a^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{Ie}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{2}}+\frac{6 \mathrm{I} a^{2} f^{2}(f x+e) \operatorname{poly} \log \left(3, \mathrm{Ie}{ }^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}-\frac{6 \mathrm{I} a^{2} f^{3} \operatorname{poly} \log \left(4, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{4}}+\frac{3 \mathrm{I} f(f x+e)^{2} \operatorname{poly} \log \left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{b d^{2}}$

$$
+\frac{6 \mathrm{I} f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}+\frac{a(f x+e)^{3} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{\left(a^{2}+b^{2}\right) d}-\frac{a(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d}
$$

$$
-\frac{a(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d}-\frac{6 a f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{4}}-\frac{6 a f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{4}}
$$

$$
-\frac{3 a f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{2}}-\frac{3 a f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{2}}+\frac{6 a f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{3}}
$$

$$
+\frac{6 a f^{2}(f x+e) \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{3}}-\frac{2 a^{2}(f x+e)^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d}+\frac{3 a f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2\left(a^{2}+b^{2}\right) d^{2}}
$$

$$
-\frac{3 a f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2\left(a^{2}+b^{2}\right) d^{3}}+\frac{6 \mathrm{I} f^{3} \operatorname{polylog}\left(4, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{4}}-\frac{3 \mathrm{I} f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{2}}-\frac{6 \mathrm{I} f^{2}(f x+e) \operatorname{polylog}\left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}
$$

$$
+\frac{2(f x+e)^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{b d}+\frac{6 \mathrm{I} a^{2} f^{3} \operatorname{poly} \log \left(4,-\mathrm{I} e^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{4}}-\frac{3 \mathrm{I} a^{2} f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{Ie}{ }^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{2}}-\frac{6 \mathrm{I} a^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{I} e^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}
$$

$$
+\frac{3 a f^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{2 d x+2 c}\right)}{4\left(a^{2}+b^{2}\right) d^{4}}-\frac{6 \mathrm{I} f^{3} \operatorname{poly} \log \left(4,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{4}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(f x+e)^{3} \tanh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Problem 96: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \tanh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 670 leaves, 32 steps):
$\frac{2(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{b d}-\frac{2 a^{2}(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d}+\frac{a(f x+e)^{2} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{\left(a^{2}+b^{2}\right) d}-\frac{a(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d}$

$$
-\frac{a(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d}+\frac{2 \mathrm{I} a^{2} f(f x+e) \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{2}}+\frac{2 \mathrm{I} a^{2} f^{2} \operatorname{polylog}\left(3, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}-\frac{2 \mathrm{I} f(f x+e) \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{2}}
$$

$$
-\frac{2 \mathrm{I} a^{2} f(f x+e) \operatorname{polylog}\left(2, \mathrm{Ie}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{2}}+\frac{a f(f x+e) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}-\frac{2 a f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{2}}
$$

$$
-\frac{2 a f(f x+e) \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{2}}+\frac{2 \mathrm{I} f^{2} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}-\frac{2 \mathrm{I} f^{2} \operatorname{polylog}\left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}-\frac{2 \mathrm{I} a^{2} f^{2} \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}
$$

$$
+\frac{2 \mathrm{I} f(f x+e) \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{2}}-\frac{a f^{2} \operatorname{polylog}\left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2\left(a^{2}+b^{2}\right) d^{3}}+\frac{2 a f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{3}}+\frac{2 a f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right) d^{3}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(f x+e)^{2} \tanh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Problem 97: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 611 leaves, 30 steps):
$\frac{(f x+e)^{2}}{b d}-\frac{a^{2}(f x+e)^{2}}{b\left(a^{2}+b^{2}\right) d}+\frac{4 a f(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}-\frac{2 f(f x+e) \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b d^{2}}+\frac{2 a^{2} f(f x+e) \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b\left(a^{2}+b^{2}\right) d^{2}}$

$$
\begin{aligned}
& -\frac{a b(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d}+\frac{a b(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d}-\frac{2 \mathrm{I} a f^{2} \operatorname{polylog}\left(2,-\mathrm{Ie}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{3}}+\frac{2 \mathrm{I} a f^{2} \operatorname{poly} \log \left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{3}} \\
& - \\
& -\frac{f^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b d^{3}}+\frac{a^{2} f^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}-\frac{2 a b f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}} \\
& +\frac{2 a b f(f x+e) \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{2 a b f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{2 a b f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)} \\
& -\frac{a(f x+e)^{2} \operatorname{sech}(d x+c)}{\left(a^{2}+b^{2}\right) d}+\frac{(f x+e)^{2} \tanh (d x+c)}{b d}-\frac{a^{2}(f x+e)^{2} \tanh (d x+c)}{b\left(a^{2}+b^{2}\right) d}
\end{aligned}
$$

Result(type 8, 340 leaves):

$$
\begin{aligned}
& -\frac{2\left(x^{2} f^{2}+2 e f x+e^{2}\right)\left(a \mathrm{e}^{d x+c}+b\right)}{d\left(a^{2}+b^{2}\right)\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)}+2\left(\int \frac { 1 } { d ( a ^ { 2 } + b ^ { 2 } ) ( ( \mathrm { e } ^ { d x + c } ) ^ { 2 } + 1 ) ( b ( \mathrm { e } ^ { d x + c } ) ^ { 2 } + 2 a \mathrm { e } ^ { d x + c } - b ) } \left(-a b d f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}-2 a b d e f x\left(\mathrm{e}^{d x+c}\right)^{3}\right.\right. \\
& \quad-a b d e^{2}\left(\mathrm{e}^{d x+c}\right)^{3}-a b d f^{2} x^{2} \mathrm{e}^{d x+c}+2 a b f^{2} x\left(\mathrm{e}^{d x+c}\right)^{3}+4 a^{2} f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}-2 a b d e f x \mathrm{e}^{d x+c}+2 a b e f\left(\mathrm{e}^{d x+c}\right)^{3}+2 b^{2} f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2} \\
& \left.\left.\quad+4 a^{2} e f\left(\mathrm{e}^{d x+c}\right)^{2}-a b d e^{2} \mathrm{e}^{d x+c}+2 a b f^{2} x \mathrm{e}^{d x+c}+2 b^{2} e f\left(\mathrm{e}^{d x+c}\right)^{2}+2 a b e f \mathrm{e}^{d x+c}-2 b^{2} f^{2} x-2 b^{2} e f\right) \mathrm{~d} x\right)
\end{aligned}
$$

Problem 98: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \cosh (d x+c) \sinh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 419 leaves, 17 steps):

$$
\begin{aligned}
\frac{e f x}{2 b d} & +\frac{f^{2} x^{2}}{4 b d}-\frac{a^{2}(f x+e)^{3}}{3 b^{3} f}+\frac{2 a f(f x+e) \cosh (d x+c)}{b^{2} d^{2}}+\frac{a^{2}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d}+\frac{a^{2}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d} \\
& +\frac{2 a^{2} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{}+\frac{2 a^{2} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2}}-\frac{2 a^{2} f^{2} \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{\left.a-\sqrt{a^{2}+b^{2}}\right)}\right.}{b^{3} d^{3}} \\
& -\frac{2 a^{2} f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{3}}-\frac{2 a f^{2} \sinh (d x+c)}{b^{2} d^{3}}-\frac{a(f x+e)^{2} \sinh (d x+c)}{b^{2} d}-\frac{f(f x+e) \cosh (d x+c) \sinh (d x+c)}{2 b d^{2}} \\
& +\frac{f^{2} \sinh (d x+c)^{2}}{4 b d^{3}}+\frac{(f x+e)^{2} \sinh (d x+c)^{2}}{2 b d}
\end{aligned}
$$

Result(type 8, 358 leaves):

$$
\begin{aligned}
& \frac{a^{2}\left(\frac{1}{3} x^{3} f^{2}+e f x^{2}+e^{2} x\right)}{b^{3}}+\frac{\left(2 d^{2} f^{2} x^{2}+4 d^{2} e f x+2 d^{2} e^{2}-2 d f^{2} x-2 e f d+f^{2}\right)\left(\mathrm{e}^{d x+c}\right)^{2}}{16 b d^{3}}-\frac{a\left(d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}-2 d f^{2} x-2 e f d+2 f^{2}\right) \mathrm{e}^{d x+c}}{2 b^{2} d^{3}} \\
& +\frac{a\left(d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}+2 d f^{2} x+2 e f d+2 f^{2}\right)}{2 b^{2} d^{3} \mathrm{e}^{d x+c}}+\frac{2 d^{2} f^{2} x^{2}+4 d^{2} e f x+2 d^{2} e^{2}+2 d f^{2} x+2 e f d+f^{2}}{16 b d^{3}\left(\mathrm{e}^{d x+c}\right)^{2}}+\int \\
& -\frac{2 a^{2}\left(a f^{2} x^{2} \mathrm{e}^{d x+c}+2 a e f x \mathrm{e}^{d x+c}-b f^{2} x^{2}+a e^{2} \mathrm{e}^{d x+c}-2 b e f x-b e^{2}\right)}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b^{3}} \mathrm{~d} x
\end{aligned}
$$

Problem 99: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \cosh (d x+c) \sinh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 258 leaves, 14 steps):

$$
\begin{aligned}
& \frac{f x}{4 b d}-\frac{a^{2}(f x+e)^{2}}{2 b^{3} f}+\frac{a f \cosh (d x+c)}{b^{2} d^{2}}+\frac{a^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d}+\frac{a^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d} \\
& \quad+\frac{a^{2} f \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2}}+\frac{a^{2} f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2}}-\frac{a(f x+e) \sinh (d x+c)}{b^{2} d}-\frac{f \cosh (d x+c) \sinh (d x+c)}{4 b d^{2}} \\
& \quad+\frac{(f x+e) \sinh (d x+c)^{2}}{2 b d}
\end{aligned}
$$

Result(type 4, 564 leaves):

$$
\begin{aligned}
& -\frac{a^{2} f x^{2}}{2 b^{3}}+\frac{a^{2} e x}{b^{3}}+\frac{(2 d f x+2 d e-f) \mathrm{e}^{2 d x+2 c}}{16 b d^{2}}-\frac{a(d f x+d e-f) \mathrm{e}^{d x+c}}{2 b^{2} d^{2}}+\frac{a(d f x+d e+f) \mathrm{e}^{-d x-c}}{2 b^{2} d^{2}}+\frac{(2 d f x+2 d e+f) \mathrm{e}^{-2 d x-2 c}}{16 b d^{2}} \\
& +\frac{2 a^{2} f c \ln \left(\mathrm{e}^{d x+c}\right)}{b^{3} d^{2}}-\frac{a^{2} f c \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{3} d^{2}}-\frac{2 a^{2} e \ln \left(\mathrm{e}^{d x+c}\right)}{b^{3} d}+\frac{a^{2} e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{3} d}-\frac{2 a^{2} f c x}{b^{3} d}-\frac{a^{2} f c^{2}}{b^{3} d^{2}} \\
& +\frac{a^{2} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{3} d}+\frac{a^{2} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{3} d^{2}}+\frac{a^{2} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{3} d} \\
& +\frac{a^{2} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{3} d^{2}}+\frac{a^{2} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2}}+\frac{a^{2} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{3} d^{2}}
\end{aligned}
$$

[^1]Optimal(type 4, 367 leaves, 19 steps):
$-\frac{a^{3} e x}{b^{4}}-\frac{a e x}{2 b^{2}}-\frac{a^{3} f x^{2}}{2 b^{4}}-\frac{a f x^{2}}{4 b^{2}}+\frac{a^{2}(f x+e) \cosh (d x+c)}{b^{3} d}+\frac{a f \cosh (d x+c)^{2}}{4 b^{2} d^{2}}+\frac{(f x+e) \cosh (d x+c)^{3}}{3 b d}-\frac{a^{2} f \sinh (d x+c)}{b^{3} d^{2}}-\frac{f \sinh (d x+c)}{3 b d^{2}}$
$-\frac{a(f x+e) \cosh (d x+c) \sinh (d x+c)}{2 b^{2} d}-\frac{f \sinh (d x+c)^{3}}{9 b d^{2}}+\frac{a^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{4} d}$

$$
-\frac{a^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{4} d}+\frac{a^{2} f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{4} d^{2}}-\frac{a^{2} f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{4} d^{2}}
$$

Result(type 4, 1127 leaves):

$$
\begin{aligned}
& -\frac{a(2 d f x+2 d e-f) \mathrm{e}^{2 d x+2 c}}{16 b^{2} d^{2}}+\frac{a(2 d f x+2 d e+f) \mathrm{e}^{-2 d x-2 c}}{16 b^{2} d^{2}}+\frac{\left(4 a^{2}+b^{2}\right)(d f x+d e+f) \mathrm{e}^{-d x-c}}{8 b^{3} d^{2}}-\frac{a^{3} f x^{2}}{2 b^{4}}-\frac{a f x^{2}}{4 b^{2}}-\frac{a^{3} e x}{b^{4}}-\frac{a e x}{2 b^{2}} \\
& -\frac{2 a^{4} e \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{4} d \sqrt{a^{2}+b^{2}}}+\frac{a^{4} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a^{4} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2} \sqrt{a^{2}+b^{2}}} \\
& +\frac{a^{2} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d \sqrt{a^{2}+b^{2}}}+\frac{a^{2} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a^{2} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d \sqrt{a^{2}+b^{2}}} \\
& -\frac{a^{2} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 a^{2} c f \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{2 a^{2} e \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{2} d \sqrt{a^{2}+b^{2}}} \\
& +\frac{a^{2} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a^{2} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{(3 d f x+3 d e-f) \mathrm{e}^{3 d x+3 c}}{72 d^{2} b}+\frac{(3 d f x+3 d e+f) \mathrm{e}^{-3 d x-3 c}}{72 d^{2} b} \\
& +\frac{a^{4} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{4} d \sqrt{a^{2}+b^{2}}}+\frac{a^{4} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{4} d^{2} \sqrt{a^{2}+b^{2}}}-\frac{a^{4} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{4} d \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

$$
-\frac{a^{4} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{4} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 a^{4} f c \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{\left(4 a^{2} d f x+b^{2} d f x+4 a^{2} d e+b^{2} d e-4 a^{2} f-b^{2} f\right) \mathrm{e}^{d x+c}}{8 b^{3} d^{2}}
$$

Problem 101: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{3} \sinh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 3, 107 leaves, 4 steps):

$$
\frac{a^{2}\left(a^{2}+b^{2}\right) \ln (a+b \sinh (d x+c))}{b^{5} d}-\frac{a\left(a^{2}+b^{2}\right) \sinh (d x+c)}{b^{4} d}+\frac{\left(a^{2}+b^{2}\right) \sinh (d x+c)^{2}}{2 b^{3} d}-\frac{a \sinh (d x+c)^{3}}{3 b^{2} d}+\frac{\sinh (d x+c)^{4}}{4 b d}
$$

Result(type 3, 613 leaves):

$$
\begin{aligned}
& \frac{5}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}+\frac{5}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}+\frac{1}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{4}}+\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}} \\
& +\frac{1}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{4}}-\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}}+\frac{3}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{3}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)} \\
& +\frac{a}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) a^{2}}{d b^{3}}+\frac{a}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) a^{2}}{d b^{3}} \\
& +\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right) a^{2}}{d b^{3}}+\frac{a}{3 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}}+\frac{a^{2}}{2 d b^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}} \\
& +\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}+\frac{a^{3}}{d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}+\frac{a^{2}}{2 d b^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{a^{4} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d b^{5}} \\
& +\frac{a}{3 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}}+\frac{a^{2}}{2 d b^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}-\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}+\frac{a^{3}}{d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)} \\
& -\frac{a^{2}}{2 d b^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}-\frac{a^{4} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d b^{5}}+\frac{a^{4} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right)}{d b^{5}}
\end{aligned}
$$

Problem 102: Result more than twice size of optimal antiderivative.

Optimal(type 3, 74 leaves, 7 steps):

$$
-\frac{a \arctan (\sinh (d x+c))}{\left(a^{2}+b^{2}\right) d}+\frac{b \ln (\cosh (d x+c))}{\left(a^{2}+b^{2}\right) d}+\frac{a^{2} \ln (a+b \sinh (d x+c))}{b\left(a^{2}+b^{2}\right) d}
$$

Result(type 3, 152 leaves):

$$
\begin{aligned}
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d b}+\frac{4 b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)}{d\left(4 a^{2}+4 b^{2}\right)}-\frac{8 a \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d\left(4 a^{2}+4 b^{2}\right)}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d b} \\
& +\frac{a^{2} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right)}{d b\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

Problem 103: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \tanh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 1048 leaves, 45 steps):
$\frac{6 \mathrm{I} a^{2} f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}-\frac{3 a^{3} f(f x+e)^{2} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{2}}+\frac{6 \mathrm{I} f^{2}(f x+e) \operatorname{poly} \log \left(2, \mathrm{Ie}^{d x+c}\right)}{b d^{3}}-\frac{3 a^{3} f^{2}(f x+e) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{3}}$ $-\frac{6 \mathrm{I} a^{2} f^{3} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{4}}-\frac{6 a^{2} f(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{2}}+\frac{a^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d}-\frac{a^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d}$ $+\frac{6 a^{2} f^{3} \operatorname{poly} \log \left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}-\frac{6 a^{2} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}+\frac{3 a f(f x+e)^{2} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b^{2} d^{2}}$ $+\frac{3 a^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{3 a^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{6 a^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}$
$+\frac{6 a^{2} f^{2}(f x+e) \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}+\frac{3 a f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b^{2} d^{3}}+\frac{6 \mathrm{I} f^{3} \operatorname{polylog}\left(3,-\mathrm{Ie} \mathrm{e}^{d x+c}\right)}{b d^{4}}+\frac{3 a^{3} f^{3} \operatorname{polylog}\left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 b^{2}\left(a^{2}+b^{2}\right) d^{4}}$
$+\frac{a^{2}(f x+e)^{3} \operatorname{sech}(d x+c)}{b\left(a^{2}+b^{2}\right) d}+\frac{a^{3}(f x+e)^{3} \tanh (d x+c)}{b^{2}\left(a^{2}+b^{2}\right) d}-\frac{6 \mathrm{I} f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}-\frac{(f x+e)^{3} \operatorname{sech}(d x+c)}{b d}-\frac{a(f x+e)^{3}}{b^{2} d}$

$$
\begin{aligned}
& +\frac{6 \mathrm{I} a^{2} f^{3} \operatorname{polylog}(3, \mathrm{Ie} d x+c)}{b\left(a^{2}+b^{2}\right) d^{4}}-\frac{6 \mathrm{I} a^{2} f^{2}(f x+e) \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}-\frac{a(f x+e)^{3} \tanh (d x+c)}{b^{2} d}-\frac{6 \mathrm{I} f^{3} \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{4}}+\frac{a^{3}(f x+e)^{3}}{b^{2}\left(a^{2}+b^{2}\right) d} \\
& +\frac{6 f(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{b d^{2}}-\frac{3 a f^{3} \operatorname{polylog}\left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 b^{2} d^{4}}
\end{aligned}
$$

Result(type 8, 489 leaves):

$$
\begin{aligned}
& \frac{2\left(f^{3} x^{3}+3 e f^{2} x^{2}+3 e^{2} f x+e^{3}\right)\left(-\mathrm{e}^{d x+c} b+a\right)}{d\left(a^{2}+b^{2}\right)\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)}+\int \frac{1}{\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)\left(a^{2}+b^{2}\right)\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) d}\left(2 \left(a^{2} d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}\right.\right. \\
& \quad+3 a^{2} d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+3 a^{2} d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3}+a^{2} d f^{3} x^{3} \mathrm{e}^{d x+c}+3 b^{2} f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+a^{2} d e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+3 a^{2} d e f^{2} x^{2} \mathrm{e}^{d x+c}+3 a b f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2} \\
& +6 b^{2} e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{3}+3 a^{2} d e^{2} f x \mathrm{e}^{d x+c}-6 a^{2} f^{3} x^{2} \mathrm{e}^{d x+c}+6 a b e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}+3 b^{2} e^{2} f\left(\mathrm{e}^{d x+c}\right)^{3}-3 b^{2} f^{3} x^{2} \mathrm{e}^{d x+c}+a^{2} d e^{3} \mathrm{e}^{d x+c}-12 a^{2} e f^{2} x \mathrm{e}^{d x+c} \\
& \left.\left.+3 a b e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}+3 a b f^{3} x^{2}-6 b^{2} e f^{2} x \mathrm{e}^{d x+c}-6 a^{2} e^{2} f \mathrm{e}^{d x+c}+6 a b e f^{2} x-3 b^{2} e^{2} f \mathrm{e}^{d x+c}+3 a b e^{2} f\right)\right) \mathrm{d} x
\end{aligned}
$$

Problem 104: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \tanh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 728 leaves, 37 steps):

$$
\begin{aligned}
& -\frac{a(f x+e)^{2}}{b^{2} d}+\frac{a^{3}(f x+e)^{2}}{b^{2}\left(a^{2}+b^{2}\right) d}+\frac{4 f(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{b d^{2}}-\frac{4 a^{2} f(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{2}}+\frac{2 a f(f x+e) \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b^{2} d^{2}} \\
& -\frac{2 a^{3} f(f x+e) \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{2}}+\frac{a^{2}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d}-\frac{a^{2}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d}-\frac{2 \mathrm{I} a^{2} f^{2} \operatorname{polylog}\left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}} \\
& -\frac{2 \mathrm{I} f^{2} \operatorname{poly} \log \left(2,-\mathrm{I}{ }^{d x+c}\right)}{b d^{3}}+\frac{2 \mathrm{I} a^{2} f^{2} \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b\left(a^{2}+b^{2}\right) d^{3}}+\frac{2 \mathrm{I} f^{2} \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}+\frac{a f^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b^{2} d^{3}}-\frac{a^{3} f^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{3}} \\
& +\frac{2 a^{2} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{2 a^{2} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{2 a^{2} f^{2} \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& +\frac{2 a^{2} f^{2} \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}-\frac{(f x+e)^{2} \operatorname{sech}(d x+c)}{b d}+\frac{a^{2}(f x+e)^{2} \operatorname{sech}(d x+c)}{b\left(a^{2}+b^{2}\right) d}-\frac{a(f x+e)^{2} \tanh (d x+c)}{b^{2} d} \\
& +\frac{a^{3}(f x+e)^{2} \tanh (d x+c)}{b^{2}\left(a^{2}+b^{2}\right) d}
\end{aligned}
$$

Result(type 8, 338 leaves):

$$
\frac{2\left(x^{2} f^{2}+2 e f x+e^{2}\right)\left(-\mathrm{e}^{d x+c} b+a\right)}{d\left(a^{2}+b^{2}\right)\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)}+\int \frac{1}{\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)\left(a^{2}+b^{2}\right)\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) d}\left(2 \left(\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} d f^{2} x^{2}+2\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} d e f x\right.\right.
$$

$+\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} d e^{2}+\mathrm{e}^{d x+c} a^{2} d f^{2} x^{2}+2\left(\mathrm{e}^{d x+c}\right)^{3} b^{2} f^{2} x+2 \mathrm{e}^{d x+c} a^{2} d e f x+2\left(\mathrm{e}^{d x+c}\right)^{2} a b f^{2} x+2\left(\mathrm{e}^{d x+c}\right)^{3} b^{2} e f+\mathrm{e}^{d x+c} a^{2} d e^{2}-4 \mathrm{e}^{d x+c} a^{2} f^{2} x$ $\left.\left.+2\left(\mathrm{e}^{d x+c}\right)^{2} a b e f-2 \mathrm{e}^{d x+c} b^{2} f^{2} x-4 \mathrm{e}^{d x+c} a^{2} e f+2 a b f^{2} x-2 \mathrm{e}^{d x+c} b^{2} e f+2 a b e f\right)\right) \mathrm{d} x$

Problem 105: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \operatorname{sech}(d x+c) \tanh (d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 701 leaves, 42 steps):

$$
\begin{aligned}
& -\frac{a(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{b^{2} d}+\frac{2 a^{3}(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right)^{2} d}+\frac{a^{3}(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{b^{2}\left(a^{2}+b^{2}\right) d}-\frac{a^{2} b(f x+e) \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{\left(a^{2}+b^{2}\right)^{2} d} \\
& \quad+\frac{a^{2} b(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{2} d}+\frac{a^{2} b(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{2} d}-\frac{\mathrm{I} a f \operatorname{polylog}\left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{2 b^{2} d^{2}}+\frac{\mathrm{I} a^{3} f \mathrm{polylog}\left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right)^{2} d^{2}}
\end{aligned}
$$

$$
+\frac{\mathrm{I} a f \text { poly } \log \left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{2 b^{2} d^{2}}+\frac{\mathrm{I} a^{3} f \text { polylog}\left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{2 b^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{\mathrm{I} a^{3} f \text { polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right)^{2} d^{2}}-\frac{\mathrm{I} a^{3} f \text { poly } \log \left(2,-\mathrm{Ie}^{d x+c}\right)}{2 b^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{a^{2} b f \text { poly } \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2\left(a^{2}+b^{2}\right)^{2} d^{2}}
$$

$$
+\frac{a^{2} b f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{2} d^{2}}+\frac{a^{2} b f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{2} d^{2}}-\frac{a f \operatorname{sech}(d x+c)}{2 b^{2} d^{2}}+\frac{a^{3} f \operatorname{sech}(d x+c)}{2 b^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{(f x+e) \operatorname{sech}(d x+c)^{2}}{2 b d}
$$

$$
+\frac{a^{2}(f x+e) \operatorname{sech}(d x+c)^{2}}{2 b\left(a^{2}+b^{2}\right) d}+\frac{f \tanh (d x+c)}{2 b d^{2}}-\frac{a^{2} f \tanh (d x+c)}{2 b\left(a^{2}+b^{2}\right) d^{2}}-\frac{a(f x+e) \operatorname{sech}(d x+c) \tanh (d x+c)}{2 b^{2} d}
$$

$$
+\frac{a^{3}(f x+e) \operatorname{sech}(d x+c) \tanh (d x+c)}{2 b^{2}\left(a^{2}+b^{2}\right) d}
$$

Result(type ?, 2067 leaves): Display of huge result suppressed!
Problem 107: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \cosh (d x+c) \sinh (d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 538 leaves, 22 steps):

$$
\begin{array}{r}
-\frac{a e f x}{2 b^{2} d}-\frac{a f^{2} x^{2}}{4 b^{2} d}+\frac{a^{3}(f x+e)^{3}}{3 b^{4} f}-\frac{2 a^{2} f(f x+e) \cosh (d x+c)}{b^{3} d^{2}}+\frac{4 f(f x+e) \cosh (d x+c)}{9 b d^{2}}-\frac{a^{3}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d} \\
-\frac{a^{3}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d}-\frac{2 a^{3} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}-\frac{2 a^{3} f(f x+e) \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}
\end{array}
$$

$$
\begin{aligned}
& \quad \frac{2 a^{3} f^{2} \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{3}}+\frac{2 a^{3} f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{3}}+\frac{2 a^{2} f^{2} \sinh (d x+c)}{b^{3} d^{3}}-\frac{4 f^{2} \sinh (d x+c)}{9 b d^{3}} \\
& +\frac{a^{2}(f x+e)^{2} \sinh (d x+c)}{b^{3} d}+\frac{a f(f x+e) \cosh (d x+c) \sinh (d x+c)}{2 b^{2} d^{2}}-\frac{a f^{2} \sinh (d x+c)^{2}}{4 b^{2} d^{3}}-\frac{a(f x+e)^{2} \sinh (d x+c)^{2}}{2 b^{2} d} \\
& -\frac{2 f(f x+e) \cosh (d x+c) \sinh (d x+c)^{2}}{9 b d^{2}}+\frac{2 f^{2} \sinh (d x+c)^{3}}{27 b d^{3}}+\frac{(f x+e)^{2} \sinh (d x+c)^{3}}{3 b d}
\end{aligned}
$$

Result(type 8, 574 leaves):

$$
\begin{aligned}
&-\frac{a^{3}\left(\frac{1}{3} x^{3} f^{2}+e f x^{2}+e^{2} x\right)}{b^{4}}+\frac{\left(9 d^{2} f^{2} x^{2}+18 d^{2} e f x+9 d^{2} e^{2}-6 d f^{2} x-6 e f d+2 f^{2}\right)\left(\mathrm{e}^{d x+c}\right)^{3}}{216 b d^{3}} \\
&-\frac{a\left(2 d^{2} f^{2} x^{2}+4 d^{2} e f x+2 d^{2} e^{2}-2 d f^{2} x-2 e f d+f^{2}\right)\left(\mathrm{e}^{d x+c}\right)^{2}}{16 b^{2} d^{3}} \\
&+\frac{\left(4 a^{2} d^{2} f^{2} x^{2}-b^{2} d^{2} f^{2} x^{2}+8 a^{2} d^{2} e f x-2 b^{2} d^{2} e f x+4 a^{2} d^{2} e^{2}-8 a^{2} d f^{2} x-b^{2} d^{2} e^{2}+2 b^{2} d f^{2} x-8 a^{2} d e f+2 e f d b^{2}+8 a^{2} f^{2}-2 b^{2} f^{2}\right) \mathrm{e}^{d x+c}}{8 b^{3} d^{3}} \\
&-\frac{\left(4 a^{2}-b^{2}\right)\left(d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}+2 d f^{2} x+2 e f d+2 f^{2}\right)}{8 b^{3} d^{3} \mathrm{e}^{d x+c}}-\frac{a\left(2 d^{2} f^{2} x^{2}+4 d^{2} e f x+2 d^{2} e^{2}+2 d f^{2} x+2 e f d+f^{2}\right)}{16 b^{2} d^{3}\left(\mathrm{e}^{d x+c}\right)^{2}} \\
&-\frac{9 d^{2} f^{2} x^{2}+18 d^{2} e f x+9 d^{2} e^{2}+6 d f^{2} x+6 e f d+2 f^{2}}{216 b d^{3}\left(\mathrm{e}^{d x+c}\right)^{3}}+\int \frac{2 a^{3}\left(a f^{2} x^{2} \mathrm{e}^{d x+c}+2 a e f x \mathrm{e}^{d x+c}-b f^{2} x^{2}+a e^{2} \mathrm{e}^{d x+c}-2 b e f x-b e^{2}\right)}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b^{4}} \mathrm{~d} x
\end{aligned}
$$

Problem 108: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \cosh (d x+c)^{3} \sinh (d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 593 leaves, 31 steps):

$$
\begin{aligned}
& -\frac{a^{3} f x}{4 b^{4} d}+\frac{3 a f x}{32 b^{2} d}+\frac{a^{3}\left(a^{2}+b^{2}\right)(f x+e)^{2}}{2 b^{6} f}-\frac{a^{4} f \cosh (d x+c)}{b^{5} d^{2}}-\frac{2 a^{2} f \cosh (d x+c)}{3 b^{3} d^{2}}+\frac{f \cosh (d x+c)}{8 b d^{2}}-\frac{a^{2} f \cosh (d x+c)^{3}}{9 b^{3} d^{2}} \\
& -\frac{a(f x+e) \cosh (d x+c)^{4}}{4 b^{2} d}-\frac{f \cosh (3 d x+3 c)}{144 b d^{2}}-\frac{f \cosh (5 d x+5 c)}{400 b d^{2}}-\frac{a^{3}\left(a^{2}+b^{2}\right)(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{6} d} \\
& -\frac{a^{3}\left(a^{2}+b^{2}\right)(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{6} d}-\frac{a^{3}\left(a^{2}+b^{2}\right) f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{6} d^{2}}-\frac{a^{3}\left(a^{2}+b^{2}\right) f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{6} d^{2}}
\end{aligned}
$$

$$
+\frac{a^{4}(f x+e) \sinh (d x+c)}{b^{5} d}+\frac{2 a^{2}(f x+e) \sinh (d x+c)}{3 b^{3} d}-\frac{(f x+e) \sinh (d x+c)}{8 b d}+\frac{a^{3} f \cosh (d x+c) \sinh (d x+c)}{4 b^{4} d^{2}}
$$

$$
\begin{aligned}
& +\frac{3 a f \cosh (d x+c) \sinh (d x+c)}{32 b^{2} d^{2}}+\frac{a^{2}(f x+e) \cosh (d x+c)^{2} \sinh (d x+c)}{3 b^{3} d}+\frac{a f \cosh (d x+c)^{3} \sinh (d x+c)}{16 b^{2} d^{2}}-\frac{a^{3}(f x+e) \sinh (d x+c)^{2}}{2 b^{4} d} \\
& +\frac{(f x+e) \sinh (3 d x+3 c)}{48 b d}+\frac{(f x+e) \sinh (5 d x+5 c)}{80 b d}
\end{aligned}
$$

Result(type 4, 1362 leaves):

$$
\begin{aligned}
& -\frac{a^{3} e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{4} d}-\frac{a^{3} f \mathrm{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}-\frac{a^{3} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{4} d^{2}}+\frac{2 a^{3} e \ln \left(\mathrm{e}^{d x+c}\right)}{b^{4} d}+\frac{a^{3} f c^{2}}{b^{4} d^{2}} \\
& -\frac{a\left(2 a^{2}+b^{2}\right)(2 d f x+2 d e+f) \mathrm{e}^{-2 d x-2 c}}{32 b^{4} d^{2}}+\frac{a^{3} f x^{2}}{2 b^{4}}-\frac{a^{3} e x}{b^{4}}+\frac{a^{5} f c^{2}}{b^{6} d^{2}}+\frac{2 a^{5} e \ln \left(\mathrm{e}^{d x+c}\right)}{b^{6} d}-\frac{a^{5} e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{6} d} \\
& -\frac{a^{5} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{6} d^{2}}-\frac{a^{5} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{6} d^{2}}+\frac{2 a^{5} f c x}{b^{6} d}-\frac{a^{5} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{6} d} \\
& -\frac{a^{5} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{6} d^{2}}-\frac{a^{5} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{6} d}-\frac{a^{5} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{6} d^{2}}-\frac{2 a^{5} f c \ln \left(\mathrm{e}^{d x+c}\right)}{b^{6} d^{2}} \\
& +\frac{a^{5} f c \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{6} d^{2}}+\frac{a^{5} f x^{2}}{2 b^{6}}-\frac{a^{5} e x}{b^{6}} \\
& +\frac{\left(8 a^{4} d f x+6 a^{2} b^{2} d f x-b^{4} d f x+8 a^{4} d e+6 a^{2} b^{2} d e-b^{4} d e-8 a^{4} f-6 a^{2} b^{2} f+b^{4} f\right) \mathrm{e}^{d x+c}}{16 b^{5} d^{2}}+\frac{(5 d f x+5 d e-f) \mathrm{e}^{5 d x+5 c}}{800 b d^{2}} \\
& +\frac{\left(12 a^{2} d f x+3 b^{2} d f x+12 a^{2} d e+3 b^{2} d e-4 a^{2} f-b^{2} f\right) \mathrm{e}^{3 d x+3 c}}{288 b^{3} d^{2}}-\frac{(5 d f x+5 d e+f) \mathrm{e}^{-5 d x-5 c}}{800 b d^{2}}-\frac{a(4 d f x+4 d e-f) \mathrm{e}^{4 d x+4 c}}{256 b^{2} d^{2}} \\
& -\frac{a\left(4 a^{2} d f x+2 b^{2} d f x+4 a^{2} d e+2 b^{2} d e-2 a^{2} f-b^{2} f\right) \mathrm{e}^{2 d x+2 c}}{32 b^{4} d^{2}}-\frac{\left(8 a^{4}+6 b^{2} a^{2}-b^{4}\right)(d f x+d e+f) \mathrm{e}^{-d x-c}}{16 b^{5} d^{2}} \\
& -\frac{\left(4 a^{2}+b^{2}\right)(3 d f x+3 d e+f) \mathrm{e}^{-3 d x-3 c}}{288 b^{3} d^{2}}-\frac{a(4 d f x+4 d e+f) \mathrm{e}^{-4 d x-4 c}}{256 b^{2} d^{2}}+\frac{2 a^{3} f c x}{b^{4} d}-\frac{a^{3} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{4} d} \\
& -\frac{a^{3} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{4} d^{2}}-\frac{a^{3} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{4} d}-\frac{a^{3} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{4} d^{2}}-\frac{2 a^{3} f c \ln \left(\mathrm{e}^{d x+c}\right)}{b^{4} d^{2}} \\
& +\frac{a^{3} f c \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{4} d^{2}}
\end{aligned}
$$

Problem 109: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \sinh (d x+c)^{2} \tanh (d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 1004 leaves, 50 steps):
$\frac{2 \mathrm{I} a^{4} f(f x+e) \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b^{3}\left(a^{2}+b^{2}\right) d^{2}}-\frac{2 a^{3} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{2 a^{3} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{2}}$

$$
\begin{aligned}
& +\frac{2 \mathrm{I} f(f x+e) \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{2}}+\frac{a^{3} f(f x+e) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{2}}+\frac{2 \mathrm{I} a^{2} f^{2} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b^{3} d^{3}}-\frac{2 \mathrm{I} a^{2} f(f x+e) \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}{ }^{d x+c}\right)}{b^{3} d^{2}} \\
& -\frac{2 \mathrm{I} a^{4} f^{2} \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b^{3}\left(a^{2}+b^{2}\right) d^{3}}-\frac{a(f x+e)^{2} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b^{2} d}+\frac{a^{3}(f x+e)^{2} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{b^{2}\left(a^{2}+b^{2}\right) d}-\frac{a^{3}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2}\left(a^{2}+b^{2}\right) d} \\
& -\frac{a^{3}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2}\left(a^{2}+b^{2}\right) d}+\frac{2 a^{3} f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{3}}+\frac{2 a^{3} f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2}\left(a^{2}+b^{2}\right) d^{3}}-\frac{2 \mathrm{I} a^{2} f^{2} \operatorname{polylog}\left(3, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{b^{3} d^{3}} \\
& -\frac{2 a^{4}(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{b^{3}\left(a^{2}+b^{2}\right) d}-\frac{a f(f x+e) \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{b^{2} d^{2}}+\frac{2 \mathrm{I} f^{2} \operatorname{polylog}\left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}-\frac{a^{3} f^{2} \operatorname{polylog}\left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 b^{2}\left(a^{2}+b^{2}\right) d^{3}} \\
& -\frac{2 \mathrm{I} f(f x+e) \operatorname{polylog}\left(2, \mathrm{Ie}^{d x+c}\right)}{b d^{2}}+\frac{2 f^{2} \sinh (d x+c)}{b d^{3}}+\frac{(f x+e)^{2} \sinh (d x+c)}{b d}-\frac{2(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{b d}+\frac{a(f x+e)^{3}}{3 b^{2} f} \\
& +\frac{2 \mathrm{I} a^{2} f(f x+e) \text { polylog }\left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{b^{3} d^{2}}+\frac{2 \mathrm{I} a^{4} f^{2} \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{b^{3}\left(a^{2}+b^{2}\right) d^{3}}-\frac{2 \mathrm{I} a^{4} f(f x+e) \operatorname{polylog}\left(2, \mathrm{Ie}^{d x+c}\right)}{b^{3}\left(a^{2}+b^{2}\right) d^{2}}+\frac{2 a^{2}(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{b^{3} d} \\
& +\frac{a f^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 b^{2} d^{3}}-\frac{2 \mathrm{I} f^{2} \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{b d^{3}}-\frac{2 f(f x+e) \cosh (d x+c)}{b d^{2}}
\end{aligned}
$$

Result(type 8, 445 leaves):

$$
\begin{aligned}
& -\frac{a\left(\frac{1}{3} x^{3} f^{2}+e f x^{2}+e^{2} x\right)}{b^{2}}+\frac{\left(d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}-2 d f^{2} x-2 e f d+2 f^{2}\right) \mathrm{e}^{d x+c}}{2 d^{3} b}-\frac{d^{2} f^{2} x^{2}+2 d^{2} e f x+d^{2} e^{2}+2 d f^{2} x+2 e f d+2 f^{2}}{2 d^{3} b \mathrm{e}^{d x+c}}+ \\
& \int \frac{1}{b^{2}\left(b\left(\mathrm{e}^{d x+c}\right)^{4}+2 a\left(\mathrm{e}^{d x+c}\right)^{3}+2 a \mathrm{e}^{d x+c}-b\right)}\left(2 \left(a^{2} f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}-b^{2} f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+2 a^{2} e f x\left(\mathrm{e}^{d x+c}\right)^{3}-a b f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-2 b^{2} e f x\left(\mathrm{e}^{d x+c}\right)^{3}\right.\right. \\
& \quad+a^{2} e^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+a^{2} f^{2} x^{2} \mathrm{e}^{d x+c}-2 a b e f x\left(\mathrm{e}^{d x+c}\right)^{2}-b^{2} e^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+b^{2} f^{2} x^{2} \mathrm{e}^{d x+c}+2 a^{2} e f x \mathrm{e}^{d x+c}-a b e^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-a b f^{2} x^{2}+2 b^{2} e f x \mathrm{e}^{d x+c} \\
& \left.\left.\quad+a^{2} e^{2} \mathrm{e}^{d x+c}-2 a b e f x+b^{2} e^{2} \mathrm{e}^{d x+c}-a b e^{2}\right)\right) \mathrm{d} x
\end{aligned}
$$

Problem 111: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \tanh (d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 820 leaves, 55 steps):

Result(type ?, 2283 leaves): Display of huge result suppressed!
Problem 112: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \operatorname{coth}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 191 leaves, 12 steps):
$\frac{(f x+e) \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a d}-\frac{(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d}-\frac{(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d}+\frac{f \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}}$

$$
-\frac{f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a d^{2}}-\frac{f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a d^{2}}
$$

Result(type 4, 450 leaves):

$$
\begin{aligned}
& -\frac{f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{d a}-\frac{f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{d^{2} a}+\frac{\ln \left(1+\mathrm{e}^{d x+c}\right) f x}{a d}-\frac{f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{d a} \\
& -\frac{f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{d^{2} a}-\frac{f \operatorname{dilog}\left(\mathrm{e}^{d x+c}\right)}{a d^{2}}-\frac{f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{d^{2} a}-\frac{f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{d^{2} a}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{f \operatorname{dilog}\left(1+\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{e \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d}-\frac{e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{d a}+\frac{e \ln \left(1+\mathrm{e}^{d x+c}\right)}{a d}-\frac{c f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d^{2}} \\
& +\frac{c f \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{d^{2} a}
\end{aligned}
$$

Problem 113: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c) \operatorname{coth}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 589 leaves, 33 steps):
$\frac{(f x+e)^{4}}{4 b f}-\frac{2(f x+e)^{3} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d}-\frac{3 f(f x+e)^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{3 f(f x+e)^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{6 f^{2}(f x+e) \operatorname{poly} \log \left(3,-\mathrm{e}^{d x+c}\right)}{a d^{3}}$


$$
+\frac{(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b d}-\frac{3 f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b d^{2}}
$$

$$
+\frac{3 f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b d^{2}}+\frac{6 f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b d^{3}}
$$

$$
-\frac{6 f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b d^{3}}-\frac{6 f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b d^{4}}+\frac{6 f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b d^{4}}
$$

Result(type 8, 240 leaves):

$$
\begin{aligned}
& \frac{\frac{1}{4} x^{4} f^{3}+e f^{2} x^{3}+\frac{3}{2} e^{2} f x^{2}+e^{3} x}{b}+\int-\frac{1}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right)}\left(2 \mathrm { e } ^ { d x + c } \left(a f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+3 a e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-2 b f^{3} x^{3} \mathrm{e}^{d x+c}\right.\right. \\
& \left.\left.\quad+3 a e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{2}-a f^{3} x^{3}-6 b e f^{2} x^{2} \mathrm{e}^{d x+c}+a e^{3}\left(\mathrm{e}^{d x+c}\right)^{2}-3 a e f^{2} x^{2}-6 b e^{2} f x \mathrm{e}^{d x+c}-3 a e^{2} f x-2 b e^{3} \mathrm{e}^{d x+c}-a e^{3}\right)\right) \mathrm{d} x
\end{aligned}
$$

Problem 114: Unable to integrate problem.
$\int \frac{(f x+e)^{3} \cosh (d x+c)^{2} \operatorname{coth}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x$
Optimal(type 4, 622 leaves, 34 steps):

$$
\begin{aligned}
& -\frac{(f x+e)^{4}}{4 a f}+\frac{\left(a^{2}+b^{2}\right)(f x+e)^{4}}{4 a b^{2} f}-\frac{6 f^{3} \cosh (d x+c)}{b d^{4}}-\frac{3 f(f x+e)^{2} \cosh (d x+c)}{b d^{2}}+\frac{(f x+e)^{3} \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a d} \\
& -\frac{\left(a^{2}+b^{2}\right)(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d}-\frac{\left(a^{2}+b^{2}\right)(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d}+\frac{3 f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}} \\
& -\frac{3\left(a^{2}+b^{2}\right) f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{2}}-\frac{3\left(a^{2}+b^{2}\right) f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{2}}-\frac{3 f^{2}(f x+e) \operatorname{polylog}\left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{3}} \\
& +\frac{6\left(a^{2}+b^{2}\right) f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{3}}+\frac{6\left(a^{2}+b^{2}\right) f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{3}}+\frac{3 f^{3} \operatorname{polylog}\left(4, \mathrm{e}^{2 d x+2 c}\right)}{4 a d^{4}} \\
& -\frac{6\left(a^{2}+b^{2}\right) f^{3} \text { polylog }\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{4}}-\frac{6\left(a^{2}+b^{2}\right) f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{4}}+\frac{6 f^{2}(f x+e) \sinh (d x+c)}{b d^{3}} \\
& +\frac{(f x+e)^{3} \sinh (d x+c)}{b d}
\end{aligned}
$$

Result(type 8, 673 leaves):

$$
\begin{aligned}
& -\frac{a\left(\frac{1}{4} x^{4} f^{3}+e f^{2} x^{3}+\frac{3}{2} e^{2} f x^{2}+e^{3} x\right)}{b^{2}}+\frac{\left(f^{3} x^{3} d^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x-3 d^{2} f^{3} x^{2}+e^{3} d^{3}-6 d^{2} e f^{2} x-3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}-6 f^{3}\right) \mathrm{e}^{d x+c}}{2 b d^{4}} \\
& \quad-\frac{f^{3} x^{3} d^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x+3 d^{2} f^{3} x^{2}+e^{3} d^{3}+6 d^{2} e f^{2} x+3 d^{2} e^{2} f+6 d f^{3} x+6 d e f^{2}+6 f^{3}}{2 b d^{4} \mathrm{e}^{d x+c}}+ \\
& \int \frac{1}{b^{2}\left(b\left(\mathrm{e}^{d x+c}\right)^{4}+2 a\left(\mathrm{e}^{d x+c}\right)^{3}-2 b\left(\mathrm{e}^{d x+c}\right)^{2}-2 a \mathrm{e}^{d x+c}+b\right)}\left(2 \left(a^{2} f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+b^{2} f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+3 a^{2} e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}-a b f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{2}\right.\right. \\
& \quad+3 b^{2} e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+3 a^{2} e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3}-a^{2} f^{3} x^{3} \mathrm{e}^{d x+c}-3 a b e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+3 b^{2} e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3}+b^{2} f^{3} x^{3} \mathrm{e}^{d x+c}+a^{2} e^{3}\left(\mathrm{e}^{d x+c}\right)^{3} \\
& \\
& \quad-3 a^{2} e f^{2} x^{2} \mathrm{e}^{d x+c}-3 a b e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{2}+a b f^{3} x^{3}+b^{2} e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} e f^{2} x^{2} \mathrm{e}^{d x+c}-3 a^{2} e^{2} f x \mathrm{e}^{d x+c}-a b e^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+3 a b e f^{2} x^{2} \\
& \\
& \left.\left.+3 b^{2} e^{2} f x \mathrm{e}^{d x+c}-a^{2} e^{3} \mathrm{e}^{d x+c}+3 a b e^{2} f x+b^{2} e^{3} \mathrm{e}^{d x+c}+b e^{3} a\right)\right) \mathrm{d} x
\end{aligned}
$$

Problem 115: Result more than twice size of optimal antiderivative.
$\int \frac{(f x+e) \cosh (d x+c)^{2} \operatorname{coth}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x$
Optimal(type 4, 304 leaves, 22 steps):

$$
\begin{aligned}
& -\frac{(f x+e)^{2}}{2 a f}+\frac{\left(a^{2}+b^{2}\right)(f x+e)^{2}}{2 a b^{2} f}-\frac{f \cosh (d x+c)}{b d^{2}}+\frac{(f x+e) \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a d}-\frac{\left(a^{2}+b^{2}\right)(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d} \\
& -\frac{\left(a^{2}+b^{2}\right)(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d}+\frac{f \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}}-\frac{\left(a^{2}+b^{2}\right) f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{2}} \\
& -\frac{\left(a^{2}+b^{2}\right) f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a b^{2} d^{2}}+\frac{(f x+e) \sinh (d x+c)}{b d}
\end{aligned}
$$

Result(type 4, 931 leaves):

$$
-\frac{a e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{2} d}-\frac{a f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}-\frac{a f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{b^{2} d^{2}}+\frac{a f c^{2}}{b^{2} d^{2}}+\frac{2 a e \ln \left(\mathrm{e}^{d x+c}\right)}{b^{2} d}
$$

$$
\left.+\frac{c f \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{d^{2} a}-\frac{f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{d a}-\frac{f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{d^{2} a}\right) \frac{f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{d a}
$$

$$
-\frac{f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{d^{2} a}+\frac{(d f x+d e-f) \mathrm{e}^{d x+c}}{2 b d^{2}}-\frac{(d f x+d e+f) \mathrm{e}^{-d x-c}}{2 b d^{2}}+\frac{a f x^{2}}{2 b^{2}}-\frac{a e x}{b^{2}}+\frac{2 a f c x}{b^{2} d}-\frac{2 a f c \ln \left(\mathrm{e}^{d x+c}\right)}{b^{2} d^{2}}
$$

$$
+\frac{a f c \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{b^{2} d^{2}}-\frac{a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d}-\frac{a f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2}}
$$

$$
-\frac{a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{b^{2} d}-\frac{a f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{b^{2} d^{2}}+\frac{e \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d}+\frac{e \ln \left(1+\mathrm{e}^{d x+c}\right)}{a d}+\frac{\ln \left(1+\mathrm{e}^{d x+c}\right) f x}{a d}
$$

$$
-\frac{c f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d^{2}}-\frac{f \operatorname{dilog}\left(\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{f \operatorname{dilog}\left(1+\mathrm{e}^{d x+c}\right)}{a d^{2}}-\frac{f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{d^{2} a}-\frac{f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{d^{2} a}
$$

$$
-\frac{e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{d a}
$$

[^2]$$
\int \frac{(f x+e)^{2} \operatorname{csch}(d x+c) \operatorname{sech}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 692 leaves, 33 steps):

$$
\begin{aligned}
& -\frac{2 b(f x+e)^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d}-\frac{2(f x+e)^{2} \operatorname{arctanh}\left(\mathrm{e}^{2 d x+2 c}\right)}{a d}+\frac{b^{2}(f x+e)^{2} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{a\left(a^{2}+b^{2}\right) d}-\frac{b^{2}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d} \\
& -\frac{b^{2}(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d}+\frac{2 \mathrm{I} b f^{2} \operatorname{polylog}\left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{3}}-\frac{2 \mathrm{I} b f(f x+e) \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}+\frac{b^{2} f(f x+e) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{a\left(a^{2}+b^{2}\right) d^{2}} \\
& -\frac{f(f x+e) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{a d^{2}}+\frac{f(f x+e) \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{a d^{2}}-\frac{2 b^{2} f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d^{2}} \\
& -\frac{2 b^{2} f(f x+e) \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d^{2}}-\frac{2 \mathrm{I} b f^{2} \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{3}}+\frac{2 \mathrm{I} b f(f x+e) \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}-\frac{b^{2} f^{2} \operatorname{polylog}\left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 a\left(a^{2}+b^{2}\right) d^{3}} \\
& +\frac{f^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 a d^{3}}-\frac{f^{2} \operatorname{polylog}\left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{3}}+\frac{2 b^{2} f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d^{3}}+\frac{2 b^{2} f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d^{3}}
\end{aligned}
$$

Result(type 8, 34 leaves):

$$
\int \frac{(f x+e)^{2} \operatorname{csch}(d x+c) \operatorname{sech}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Problem 118: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \operatorname{csch}(d x+c) \operatorname{sech}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 411 leaves, 26 steps):

$$
\begin{array}{r}
-\frac{2 b(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d}-\frac{2(f x+e) \operatorname{arctanh}\left(\mathrm{e}^{2 d x+2 c}\right)}{a d}+\frac{b^{2}(f x+e) \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{a\left(a^{2}+b^{2}\right) d}-\frac{b^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d} \\
-\frac{b^{2}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d}+\frac{\mathrm{I} b f \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}-\frac{\mathrm{I} b f \operatorname{polylog}\left(2, \mathrm{I} e^{d x+c}\right)}{\left(a^{2}+b^{2}\right) d^{2}}+\frac{b^{2} f \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a\left(a^{2}+b^{2}\right) d^{2}}
\end{array}
$$

$$
\left.-\frac{f \text { poly } \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}}+\frac{f \text { poly } \log \left(2, \mathrm{e}^{2} d x+2 c\right.}{}\right)-\frac{b^{2} f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{2 a d^{2}}-\frac{b^{2} f \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a\left(a^{2}+b^{2}\right) d^{2}}
$$

Result (type 4, 1064 leaves):

$$
\begin{aligned}
& -\frac{f b^{2} \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{d\left(a^{2}+b^{2}\right) a}-\frac{f b^{2} \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{d^{2}\left(a^{2}+b^{2}\right) a}+\frac{c f b^{2} \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{d^{2}\left(a^{2}+b^{2}\right) a} \\
& -\frac{f b^{2} \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{d\left(a^{2}+b^{2}\right) a}-\frac{f b^{2} \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{d^{2}\left(a^{2}+b^{2}\right) a}+\frac{4 \mathrm{I} f \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) b x}{d\left(4 a^{2}+4 b^{2}\right)}+\frac{4 \mathrm{I} f \ln (1+\mathrm{Ie} d x+c) b c}{d^{2}\left(4 a^{2}+4 b^{2}\right)} \\
& -\frac{4 \mathrm{I} f \ln \left(1-\mathrm{I} \mathrm{e}^{d x+c}\right) b x}{d\left(4 a^{2}+4 b^{2}\right)}-\frac{4 \mathrm{I} f \ln \left(1-\mathrm{I}^{d x+c}\right) b c}{d^{2}\left(4 a^{2}+4 b^{2}\right)}+\frac{e \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d}+\frac{e \ln \left(1+\mathrm{e}^{d x+c}\right)}{a d}+\frac{\ln \left(1+\mathrm{e}^{d x+c}\right) f x}{a d}-\frac{c f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d^{2}} \\
& -\frac{f \operatorname{dilog}\left(\mathrm{e}^{d x+c}\right)}{a d^{2}}+\frac{f \mathrm{dilog}\left(1+\mathrm{e}^{d x+c}\right)}{a d^{2}}-\frac{4 f \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) a x}{d\left(4 a^{2}+4 b^{2}\right)}-\frac{4 f \ln \left(1+\mathrm{Ie}^{d x+c}\right) a c}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{4 f \ln \left(1-\mathrm{Ie}^{d x+c}\right) a x}{d\left(4 a^{2}+4 b^{2}\right)}-\frac{4 f \ln \left(1-\mathrm{Ie}{ }^{d x+c}\right) a c}{d^{2}\left(4 a^{2}+4 b^{2}\right)} \\
& +\frac{4 c f a \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{f b^{2} \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{d^{2}\left(a^{2}+b^{2}\right) a}-\frac{f b^{2} \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{d^{2}\left(a^{2}+b^{2}\right) a}+\frac{8 c f b \arctan \left(\mathrm{e}^{d x+c}\right)}{d^{2}\left(4 a^{2}+4 b^{2}\right)} \\
& -\frac{e b^{2} \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{d\left(a^{2}+b^{2}\right) a}+\frac{4 \mathrm{I} f \operatorname{dilog}\left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) b}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{4 \mathrm{I} f \operatorname{dilog}\left(1-\mathrm{Ie}^{d x+c}\right) b}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{4 f \operatorname{dilog}\left(1-\mathrm{Ie} \mathrm{e}^{d x+c}\right) a}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{4 f \operatorname{dilog}\left(1+\mathrm{Ie} \mathrm{e}^{d x+c}\right) a}{d^{2}\left(4 a^{2}+4 b^{2}\right)} \\
& -\frac{4 e a \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{d\left(4 a^{2}+4 b^{2}\right)}-\frac{8 e b \arctan \left(\mathrm{e}^{d x+c}\right)}{d\left(4 a^{2}+4 b^{2}\right)}
\end{aligned}
$$

Problem 121: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c) \operatorname{sech}(d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 3, 156 leaves, 9 steps):
$-\frac{b^{3} \arctan (\sinh (d x+c))}{\left(a^{2}+b^{2}\right)^{2} d}-\frac{b \arctan (\sinh (d x+c))}{2\left(a^{2}+b^{2}\right) d}-\frac{a\left(a^{2}+2 b^{2}\right) \ln (\cosh (d x+c))}{\left(a^{2}+b^{2}\right)^{2} d}+\frac{\ln (\sinh (d x+c))}{a d}-\frac{b^{4} \ln (a+b \sinh (d x+c))}{a\left(a^{2}+b^{2}\right)^{2} d}$
$+\frac{\operatorname{sech}(d x+c)^{2}(a-b \sinh (d x+c))}{2\left(a^{2}+b^{2}\right) d}$
Result(type 3, 529 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a^{2} b}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} b^{3}}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a^{3}}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}} \\
& -\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a b^{2}}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2} b}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}} \\
& - \\
& \\
& \quad \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{3}}{\operatorname{d(a^{4}+2b^{2}a^{2}+b^{4})(\operatorname {tanh}(\frac {dx}{2}+\frac {c}{2})^{2}+1)^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right) a^{3}}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}-\frac{2 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right) b^{2} a}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}} \\
& -\frac{\arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a^{2} b}{d\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}-\frac{3 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b^{3}}{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)} \\
& -\frac{b^{4} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right)}{d a\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}
\end{aligned}
$$

Problem 124: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \cosh (d x+c) \operatorname{coth}(d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 491 leaves, 37 steps):
$\frac{b(f x+e)^{3}}{3 a^{2} f}-\frac{\left(a^{2}+b^{2}\right)(f x+e)^{3}}{3 a^{2} b f}-\frac{4 f(f x+e) \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a d^{2}}-\frac{(f x+e)^{2} \operatorname{csch}(d x+c)}{a d}-\frac{b(f x+e)^{2} \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a^{2} d}$

$$
\begin{aligned}
& +\frac{\left(a^{2}+b^{2}\right)(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} b d}+\frac{\left(a^{2}+b^{2}\right)(f x+e)^{2} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} b d}-\frac{2 f^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{a d^{3}}+\frac{2 f^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{d x+c}\right)}{a d^{3}} \\
& -\frac{b f(f x+e) \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{a^{2} d^{2}}+\frac{2\left(a^{2}+b^{2}\right) f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} b d^{2}}+\frac{2\left(a^{2}+b^{2}\right) f(f x+e) \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} b d^{2}} \\
& +\frac{b f^{2} \operatorname{polylog}\left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a^{2} d^{3}}-\frac{2\left(a^{2}+b^{2}\right) f^{2} \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} b d^{3}}-\frac{2\left(a^{2}+b^{2}\right) f^{2} \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} b d^{3}}
\end{aligned}
$$

Result(type 8, 482 leaves):

$$
\frac{\frac{1}{3} x^{3} f^{2}+e f x^{2}+e^{2} x}{b}-\frac{2\left(x^{2} f^{2}+2 e f x+e^{2}\right) \mathrm{e}^{d x+c}}{d a\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right)}+\int-\frac{1}{a\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right) d\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right) b}\left(2 \left(\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} d f^{2} x^{2}+b^{2} d f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}\right.\right.
$$

$$
+2\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} d e f x-a b d f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+2 b^{2} d e f x\left(\mathrm{e}^{d x+c}\right)^{3}+\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} d e^{2}-\mathrm{e}^{d x+c} a^{2} d f^{2} x^{2}-2 a b d e f x\left(\mathrm{e}^{d x+c}\right)^{2}+b^{2} d e^{2}\left(\mathrm{e}^{d x+c}\right)^{3}
$$

$$
+b^{2} d f^{2} x^{2} \mathrm{e}^{d x+c}-2\left(\mathrm{e}^{d x+c}\right)^{3} b^{2} f^{2} x-2 \mathrm{e}^{d x+c} a^{2} d e f x-a b d e^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+a b d f^{2} x^{2}-4\left(\mathrm{e}^{d x+c}\right)^{2} a b f^{2} x+2 b^{2} d e f x \mathrm{e}^{d x+c}-2\left(\mathrm{e}^{d x+c}\right)^{3} b^{2} e f
$$

$$
\left.\left.-\mathrm{e}^{d x+c} a^{2} d e^{2}+2 a b d e f x-4\left(\mathrm{e}^{d x+c}\right)^{2} a b e f+b^{2} d e^{2} \mathrm{e}^{d x+c}+2 \mathrm{e}^{d x+c} b^{2} f^{2} x+a b d e^{2}+2 \mathrm{e}^{d x+c} b^{2} e f\right)\right) \mathrm{d} x
$$

Problem 125: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c) \operatorname{coth}(d x+c)^{2}}{a+b \sinh (d x+c)} d x
$$

Optimal (type 3, 59 leaves, 4 steps):

$$
-\frac{\operatorname{csch}(d x+c)}{a d}-\frac{b \ln (\sinh (d x+c))}{a^{2} d}+\frac{\left(a^{2}+b^{2}\right) \ln (a+b \sinh (d x+c))}{a^{2} b d}
$$

Result(type 3, 171 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{2 d a}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d b}-\frac{1}{2 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}-\frac{b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d b} \\
& \quad+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right) \quad b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right)}{d a^{2}}
\end{aligned}
$$

Problem 131: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{2} \operatorname{sech}(d x+c)^{3}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 3, 176 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{a \arctan (\sinh (d x+c))}{2\left(a^{2}+b^{2}\right) d}-\frac{a\left(a^{2}+2 b^{2}\right) \arctan (\sinh (d x+c))}{\left(a^{2}+b^{2}\right)^{2} d}-\frac{\operatorname{csch}(d x+c)}{a d}+\frac{b\left(a^{2}+2 b^{2}\right) \ln (\cosh (d x+c))}{\left(a^{2}+b^{2}\right)^{2} d}-\frac{b \ln (\sinh (d x+c))}{a^{2} d} \\
& +\frac{b^{5} \ln (a+b \sinh (d x+c))}{a^{2}\left(a^{2}+b^{2}\right)^{2} d}-\frac{\operatorname{sech}(d x+c)^{2}(b+a \sinh (d x+c))}{2\left(a^{2}+b^{2}\right) d}
\end{aligned}
$$

Result(type 3, 477 leaves):

$$
\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{2 d a}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a^{3}}{d\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} b^{2} a}{\left.d\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}+\frac{c}{2}\right)^{2} a^{2} b} d\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}
$$

$$
\begin{aligned}
& +\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b^{3}}{d\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{3}}{d\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2} a}{d\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{2}} \\
& +\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right) a^{2} b}{d\left(a^{2}+b^{2}\right)^{2}}+\frac{2 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right) b^{3}}{d\left(a^{2}+b^{2}\right)^{2}}-\frac{3 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a^{3}}{d\left(a^{2}+b^{2}\right)^{2}}-\frac{5 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b^{2} a}{d\left(a^{2}+b^{2}\right)^{2}} \\
& -\frac{1}{2 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}-\frac{b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{2}}+\frac{b^{5} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b-a\right)}{d\left(a^{2}+b^{2}\right)^{2} a^{2}}
\end{aligned}
$$

Problem 132: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \operatorname{coth}(d x+c) \operatorname{csch}(d x+c)^{2}}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 709 leaves, 34 steps):

$$
\begin{aligned}
& -\frac{3 f(f x+e)^{2}}{2 a d^{2}}+\frac{6 b f(f x+e)^{2} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}-\frac{3 f(f x+e)^{2} \operatorname{coth}(d x+c)}{2 a d^{2}}+\frac{b(f x+e)^{3} \operatorname{csch}(d x+c)}{a^{2} d}-\frac{(f x+e)^{3} \operatorname{csch}(d x+c)^{2}}{2 a d} \\
& \quad+\frac{3 f^{2}(f x+e) \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a d^{3}}+\frac{b^{2}(f x+e)^{3} \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a^{3} d}-\frac{b^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d}-\frac{b^{2}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{\left.a+\sqrt{a^{2}+b^{2}}\right)}\right.}{a^{3} d}
\end{aligned}
$$

$$
+\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}-\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}+\frac{3 f^{3} \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{4}}+\frac{3 b^{2} f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{2}}
$$

$$
-\frac{3 b^{2} f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2}}-\frac{3 b^{2} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2}}-\frac{6 b f^{3} \operatorname{polylog}\left(3,-\mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}
$$

$$
+\frac{6 b f^{3} \operatorname{poly} \log \left(3, \mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}-\frac{3 b^{2} f^{2}(f x+e) \operatorname{poly} \log \left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{3}}+\frac{6 b^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{3}}
$$

$$
+\frac{6 b^{2} f^{2}(f x+e) \text { polylog }\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{3}}+\frac{3 b^{2} f^{3} \operatorname{polylog}\left(4, \mathrm{e}^{2 d x+2 c}\right)}{4 a^{3} d^{4}}-\frac{6 b^{2} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{4}}
$$

$$
-\frac{6 b^{2} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{4}}
$$

Result(type 8, 741 leaves):

$$
\begin{aligned}
& -\frac{1}{a^{2} d^{2}\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right)^{2}}\left(-2 b d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+2 a d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{2}-6 b d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+6 a d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-6 b d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3}+2 b d f^{3} x^{3} \mathrm{e}^{d x+c}\right. \\
& +6 a d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{2}+3 a f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-2 b d e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+6 b d e f^{2} x^{2} \mathrm{e}^{d x+c}+2 a d e^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+6 a e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}+6 b d e^{2} f x \mathrm{e}^{d x+c} \\
& \left.+3 a e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}-3 a f^{3} x^{2}+2 b d e^{3} \mathrm{e}^{d x+c}-6 a e f^{2} x-3 a e^{2} f\right)+4( \\
& \int \frac{1}{2 a^{2}\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right) d^{2}\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right)}\left(b^{2} d^{2} f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} d^{2} e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} d^{2} e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3}+b^{2} d^{2} f^{3} x^{3} \mathrm{e}^{d x+c}\right. \\
& -3 b^{2} d f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}-6 a b d f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+b^{2} d^{2} e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} d^{2} e f^{2} x^{2} \mathrm{e}^{d x+c}-6 b^{2} d e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{3}-12 a b d e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2} \\
& +3 b^{2} d^{2} e^{2} f x \mathrm{e}^{d x+c}-3 b^{2} d e^{2} f\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} d f^{3} x^{2} \mathrm{e}^{d x+c}-6 a b d e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}+3 a b f^{3} x\left(\mathrm{e}^{d x+c}\right)^{2}+b^{2} d^{2} e^{3} \mathrm{e}^{d x+c}+6 b^{2} d e f^{2} x \mathrm{e}^{d x+c} \\
& \left.\left.+6 a^{2} f^{3} x \mathrm{e}^{d x+c}+3 a b e f^{2}\left(\mathrm{e}^{d x+c}\right)^{2}+3 b^{2} d e^{2} f \mathrm{e}^{d x+c}+6 a^{2} e f^{2} \mathrm{e}^{d x+c}-3 a b f^{3} x-3 a b e f^{2}\right) \mathrm{dx}\right)
\end{aligned}
$$

Problem 134: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \operatorname{csch}(d x+c)^{3} \operatorname{sech}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 1674 leaves, 87 steps):
$\frac{3 \mathrm{I} b^{3} f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}+\frac{6 \mathrm{I} b^{3} f^{2}(f x+e) \operatorname{polylog}\left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}}-\frac{3 b^{4} f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d^{2}}$

$$
-\frac{3 b^{4} f(f x+e)^{2} \text { polylog }\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d^{2}}+\frac{6 b^{4} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d^{3}}+\frac{6 b^{4} f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d^{3}}
$$

$$
+\frac{3 b^{4} f(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a^{3}\left(a^{2}+b^{2}\right) d^{2}}-\frac{3 b^{4} f^{2}(f x+e) \operatorname{poly} \log \left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 a^{3}\left(a^{2}+b^{2}\right) d^{3}}+\frac{6 \mathrm{I} b f^{3} \operatorname{poly} \log \left(4, \mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}
$$

$$
-\frac{3 \mathrm{I} b f(f x+e)^{2} \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}-\frac{6 \mathrm{I} b f^{2}(f x+e) \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}-\frac{6 \mathrm{I} b^{3} f^{3} \operatorname{poly} \log \left(4, \mathrm{I} e^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{4}}+\frac{3 f^{2}(f x+e) \ln \left(1-\mathrm{e}^{2 d x+2 c}\right)}{a d^{3}}
$$

$$
-\frac{6 b^{4} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d^{4}}-\frac{6 b^{4} f^{3} \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d^{4}}+\frac{b^{4}(f x+e)^{3} \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{a^{3}\left(a^{2}+b^{2}\right) d}
$$

$$
-\frac{b^{4}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d}-\frac{b^{4}(f x+e)^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d}+\frac{3 b^{2} f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{3}}
$$

$$
\begin{aligned}
& +\frac{3 b^{4} f^{3} \operatorname{polylog}\left(4,-\mathrm{e}^{2 d x+2 c}\right)}{4 a^{3}\left(a^{2}+b^{2}\right) d^{4}}-\frac{6 \mathrm{I} b f^{3} \operatorname{poly} \log \left(4,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}+\frac{6 b f(f x+e)^{2} \operatorname{arctanh}\left(\mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}+\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(2,-\mathrm{e}^{d x+c}\right)}{a^{2} d^{3}} \\
& -\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(2, \mathrm{e}^{d x+c}\right)}{a^{2} d^{3}}+\frac{3 b^{2} f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{2}}-\frac{3 b^{2} f^{2}(f x+e) \operatorname{polylog}\left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{3}}-\frac{2 b^{3}(f x+e)^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d} \\
& -\frac{3 b^{2} f(f x+e)^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{2}}+\frac{3 f^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{2 d x+2 c}\right)}{4 a d^{4}}-\frac{3 f^{3} \operatorname{polylog}\left(4, \mathrm{e}^{2 d x+2 c}\right)}{4 a d^{4}}-\frac{3 f(f x+e)^{2}}{2 a d^{2}}+\frac{3 f^{3} \operatorname{poly} \log \left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{4}} \\
& +\frac{2(f x+e)^{3} \operatorname{arctanh}\left(\mathrm{e}^{2 d x+2 c}\right)}{a d}-\frac{(f x+e)^{3} \operatorname{coth}(d x+c)^{2}}{2 a d}+\frac{3 \mathrm{I} b f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{Ie}^{d x+c}\right)}{a^{2} d^{2}}+\frac{6 \mathrm{I} b f^{2}(f x+e) \operatorname{poly} \log (3,-\mathrm{Ie} d x+c)}{a^{2} d^{3}} \\
& +\frac{6 \mathrm{I} b^{3} f^{3} \operatorname{polylog}\left(4,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{4}}-\frac{3 \mathrm{I} b^{3} f(f x+e)^{2} \text { polylog }\left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{6 \mathrm{I} b^{3} f^{2}(f x+e) \operatorname{polylog}\left(3,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}}-\frac{3 f(f x+e)^{2} \operatorname{coth}(d x+c)}{2 a d^{2}} \\
& -\frac{6 b f^{3} \operatorname{polylog}\left(3,-\mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}+\frac{6 b f^{3} \operatorname{polylog}\left(3, \mathrm{e}^{d x+c}\right)}{a^{2} d^{4}}+\frac{3 b^{2} f^{3} \operatorname{polylog}\left(4, \mathrm{e}^{2 d x+2 c}\right)}{4 a^{3} d^{4}}+\frac{2 b(f x+e)^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{a^{2} d} \\
& -\frac{2 b^{2}(f x+e)^{3} \operatorname{arctanh}\left(\mathrm{e}^{2 d x+2 c}\right)}{a^{3} d}+\frac{b(f x+e)^{3} \operatorname{csch}(d x+c)}{a^{2} d}+\frac{3 f(f x+e)^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}}-\frac{3 f^{2}(f x+e) \operatorname{poly} \log \left(3,-\mathrm{e}^{2 d x+2 c}\right)}{2 a d^{3}} \\
& -\frac{3 b^{2} f^{3} \mathrm{poly} \log \left(4,-\mathrm{e}^{2 d x+2 c}\right)}{4 a^{3} d^{4}}-\frac{3 f(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}}+\frac{3 f^{2}(f x+e) \operatorname{poly} \log \left(3, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{3}}+\frac{(f x+e)^{3}}{2 a d}
\end{aligned}
$$

Result(type 8, 1015 leaves):

$$
\begin{aligned}
& -\frac{1}{a^{2} d^{2}\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right)^{2}}\left(-2 b d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+2 a d f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{2}-6 b d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+6 a d e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-6 b d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3}+2 b d f^{3} x^{3} \mathrm{e}^{d x+c}\right. \\
& +6 a d e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{2}+3 a f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-2 b d e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+6 b d e f^{2} x^{2} \mathrm{e}^{d x+c}+2 a d e^{3}\left(\mathrm{e}^{d x+c}\right)^{2}+6 a e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}+6 b d e^{2} f x \mathrm{e}^{d x+c} \\
& \left.+3 a e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}-3 a f^{3} x^{2}+2 b d e^{3} \mathrm{e}^{d x+c}-6 a e f^{2} x-3 a e^{2} f\right)+16\left(\int\right. \\
& -\frac{1}{8 a^{2}\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right) d^{2}\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}-b\right)}\left(-3\left(\mathrm{e}^{d x+c}\right)^{4} a b f^{3} x-3\left(\mathrm{e}^{d x+c}\right)^{4} a b e f^{2}-3 b^{2} d e^{2} f \mathrm{e}^{d x+c}\right. \\
& -b^{2} d^{2} f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{5}+4 a^{2} d^{2} f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}+3 b^{2} d f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{5}+3 b^{2} d e^{2} f\left(\mathrm{e}^{d x+c}\right)^{5}-2 b^{2} d^{2} f^{3} x^{3}\left(\mathrm{e}^{d x+c}\right)^{3}-b^{2} d^{2} f^{3} x^{3} \mathrm{e}^{d x+c}-3 b^{2} d f^{3} x^{2} \mathrm{e}^{d x+c} \\
& -3 b^{2} d^{2} e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{5}-3 b^{2} d^{2} e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{5}+12 a^{2} d^{2} e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}+6 a b d f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{4}+6 b^{2} d e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{5}+12 a^{2} d^{2} e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3} \\
& +6 a b d e^{2} f\left(\mathrm{e}^{d x+c}\right)^{4}+12 a b d e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{4}+12 a b d e f^{2} x\left(\mathrm{e}^{d x+c}\right)^{2}+3 a b f^{3} x+3 a b e f^{2}-2 b^{2} d^{2} e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}-b^{2} d^{2} e^{3} \mathrm{e}^{d x+c}-6 a^{2} f^{3} x \mathrm{e}^{d x+c} \\
& -6 a^{2} e f^{2} \mathrm{e}^{d x+c}-b^{2} d^{2} e^{3}\left(\mathrm{e}^{d x+c}\right)^{5}+4 a^{2} d^{2} e^{3}\left(\mathrm{e}^{d x+c}\right)^{3}-6\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} f^{3} x-6\left(\mathrm{e}^{d x+c}\right)^{3} a^{2} e f^{2}-6 b^{2} d^{2} e f^{2} x^{2}\left(\mathrm{e}^{d x+c}\right)^{3}-6 b^{2} d^{2} e^{2} f x\left(\mathrm{e}^{d x+c}\right)^{3} \\
& \left.\left.+6 a b d f^{3} x^{2}\left(\mathrm{e}^{d x+c}\right)^{2}-3 b^{2} d^{2} e f^{2} x^{2} \mathrm{e}^{d x+c}-3 b^{2} d^{2} e^{2} f x \mathrm{e}^{d x+c}+6 a b d e^{2} f\left(\mathrm{e}^{d x+c}\right)^{2}-6 b^{2} d e f^{2} x \mathrm{e}^{d x+c}\right) \mathrm{dx}\right)
\end{aligned}
$$

Problem 135: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \operatorname{csch}(d x+c)^{3} \operatorname{sech}(d x+c)}{a+b \sinh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 714 leaves, 49 steps):
$\frac{\mathrm{I} b^{3} f \operatorname{poly} \log \left(2,-\mathrm{Ie}{ }^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{\mathrm{I} b^{3} f \operatorname{poly} \log \left(2, \mathrm{Ie} \mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}+\frac{f x \ln (\tanh (d x+c))}{a d}+\frac{b^{4}(f x+e) \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{a^{3}\left(a^{2}+b^{2}\right) d}-\frac{b^{4}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d}$

$$
\begin{aligned}
& \quad b^{4}(f x+e) \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right) \\
& -\frac{b^{4} f \operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d}-\frac{b^{4} f \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3}\left(a^{2}+b^{2}\right) d^{2}}-\frac{\operatorname{Ibf} \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2} d^{2}} \\
& +\frac{2 b f x \arctan \left(\mathrm{e}^{d x+c}\right)}{a^{2} d}-\frac{2 b^{3}(f x+e) \arctan \left(\mathrm{e}^{d x+c}\right)}{a^{2}\left(a^{2}+b^{2}\right) d}-\frac{b f x \arctan (\sinh (d x+c))}{\left.a^{2} d a^{2}+b^{2}\right) d^{2}}+\frac{\mathrm{I} b f \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}+\frac{b^{4} f \operatorname{poly} \log \left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a^{3}\left(a^{2}+b^{2}\right) d^{2}} \\
& -\frac{(f x+e) \ln (\tanh (d x+c))}{a d}-\frac{f \operatorname{coth}(d x+c)}{2 a d^{2}}-\frac{(f x+e) \operatorname{coth}(d x+c)^{2}}{2 a d}+\frac{f \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}}-\frac{f \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a d^{2}}+\frac{f x}{2 a d} \\
& +\frac{b(f x+e) \arctan (\sinh (d x+c))}{a^{2} d}+\frac{2 f x \operatorname{arctanh}\left(\mathrm{e}^{2 d x+2 c}\right)}{a d}-\frac{2 b^{2}(f x+e) \operatorname{arctanh}\left(\mathrm{e}^{2 d x+2 c}\right)}{a^{3} d}+\frac{b f \operatorname{arctanh}(\cosh (d x+c))}{a^{2} d^{2}} \\
& +\frac{b(f x+e) \operatorname{csch}(d x+c)}{a^{2} d}-\frac{b^{2} f \operatorname{polylog}\left(2,-\mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{2}}+\frac{b^{2} f \operatorname{polylog}\left(2, \mathrm{e}^{2 d x+2 c}\right)}{2 a^{3} d^{2}}
\end{aligned}
$$

Result(type 4, 1477 leaves):

$$
\begin{aligned}
& \frac{b^{2} f \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{d^{2}\left(a^{2}+b^{2}\right)^{3 / 2}}+\frac{b^{2} e \ln \left(1+\mathrm{e}^{d x+c}\right)}{a^{3} d}+\frac{b^{2} e \ln \left(\mathrm{e}^{d x+c}-1\right)}{a^{3} d}-\frac{b^{2} f \operatorname{dilog}\left(\mathrm{e}^{d x+c}\right)}{a^{3} d^{2}}+\frac{b^{2} f \operatorname{dilog}\left(1+\mathrm{e}^{d x+c}\right)}{a^{3} d^{2}}-\frac{b f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a^{2} d^{2}} \\
& +\frac{b f \ln \left(1+\mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}-\frac{e \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d}-\frac{e \ln \left(1+\mathrm{e}^{d x+c}\right)}{a d}-\frac{b^{4} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) x}{a^{3} d\left(a^{2}+b^{2}\right)}-\frac{b^{4} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) c}{a^{3} d^{2}\left(a^{2}+b^{2}\right)} \\
& -\frac{b^{4} f \ln \left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right) c}{a^{3} d^{2}\left(a^{2}+b^{2}\right)}+\frac{b^{4} f c \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{a^{3} d^{2}\left(a^{2}+b^{2}\right)}-\frac{b^{4} f \ln \left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right) x}{a^{3} d\left(a^{2}+b^{2}\right)}+\frac{4 \mathrm{I} f \ln \left(1-\mathrm{I} \mathrm{e}^{d x+c}\right) b x}{d\left(4 a^{2}+4 b^{2}\right)} \\
& -\frac{4 \mathrm{I} f \ln \left(1+\mathrm{Ie}^{d x+c}\right) b x}{d\left(4 a^{2}+4 b^{2}\right)}+\frac{4 \mathrm{I} f \ln \left(1-\mathrm{Ie}^{d x+c}\right) b c}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{4 \mathrm{I} f \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) b c}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{\ln \left(1+\mathrm{e}^{d x+c}\right) f x}{a d}+\frac{c f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a d^{2}}+\frac{f \mathrm{dilog}\left(\mathrm{e}^{d x+c}\right)}{a d^{2}} \\
& -\frac{f \operatorname{dilog}\left(1+\mathrm{e}^{d x+c}\right)}{a d^{2}}-\frac{b^{2} c f \ln \left(\mathrm{e}^{d x+c}-1\right)}{a^{3} d^{2}}+\frac{b^{2} f \ln \left(1+\mathrm{e}^{d x+c}\right) x}{a^{3} d}-\frac{b^{2} f \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{b^{4} f \operatorname{arctanh}\left(\frac{2 \mathrm{e}^{d x+c} b+2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2}\left(a^{2}+b^{2}\right)^{3 / 2}} \\
& -\frac{b^{4} e \ln \left(b \mathrm{e}^{2 d x+2 c}+2 a \mathrm{e}^{d x+c}-b\right)}{a^{3} d\left(a^{2}+b^{2}\right)}-\frac{4 \mathrm{I} f \operatorname{dilog}\left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) b}{d^{2}\left(4 a^{2}+4 b^{2}\right)}+\frac{4 \mathrm{I} f \operatorname{dilog}(1-\mathrm{Ie} d x+c) b}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{b^{4} f \operatorname{dilog}\left(\frac{-\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}-a}{-a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2}\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

$$
\left.\begin{array}{l}
-\frac{b^{4} f \operatorname{dilog}\left(\frac{\mathrm{e}^{d x+c} b+\sqrt{a^{2}+b^{2}}+a}{a+\sqrt{a^{2}+b^{2}}}\right)}{a^{3} d^{2}\left(a^{2}+b^{2}\right)} \\
-\frac{-2 b d f x \mathrm{e}^{3 d x+3 c}+2 a d f x \mathrm{e}^{2 d x+2 c}-2 b d e \mathrm{e}^{3 d x+3 c}+2 a d e \mathrm{e}^{2 d x+2 c}+2 b d f x \mathrm{e}^{d x+c}+a f \mathrm{e}^{2 d x+2 c}+2 b d e \mathrm{e}^{d x+c}-a f}{d^{2} a^{2}\left(\mathrm{e}^{2 d x+2 c}-1\right)^{2}}+\frac{4 f \ln \left(1+\mathrm{I} \mathrm{e}^{d x+c}\right) a x}{d\left(4 a^{2}+4 b^{2}\right)} \\
+\frac{4 f \ln \left(1+\mathrm{Ie}^{d x+c}\right) a c}{d^{2}\left(4 a^{2}+4 b^{2}\right)}+\frac{4 f \ln \left(1-\mathrm{I} \mathrm{e}^{d x+c}\right) a x}{d\left(4 a^{2}+4 b^{2}\right)}+\frac{4 f \ln \left(1-\mathrm{I} \mathrm{e}^{d x+c}\right) a c}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{4 c f a \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{d^{2}\left(4 a^{2}+4 b^{2}\right)}-\frac{8 c f b \arctan \left(\mathrm{e}^{d x+c}\right)}{d^{2}\left(4 a^{2}+4 b^{2}\right)} \\
+\frac{4 f \operatorname{dilog}(1-\mathrm{Ie}}{\left.d^{d x+c}\right) a} \\
d^{2}\left(4 a^{2}+4 b^{2}\right)
\end{array} \frac{4 f \operatorname{dilog}\left(1+\mathrm{Ie}^{d x+c}\right) a}{d^{2}\left(4 a^{2}+4 b^{2}\right)}+\frac{4 e a \ln \left(1+\mathrm{e}^{2 d x+2 c}\right)}{d\left(4 a^{2}+4 b^{2}\right)}+\frac{8 e b \arctan \left(\mathrm{e}^{d x+c}\right)}{d\left(4 a^{2}+4 b^{2}\right)}\right)
$$

Test results for the 30 problems in "6.1.3 (ex)^m (a+b sinh(c+dx^n))^p.txt"
Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh \left(a+\frac{b}{x}\right)}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 46 leaves, 4 steps):

$$
-\frac{2 \cosh \left(a+\frac{b}{x}\right)}{b^{3}}-\frac{\cosh \left(a+\frac{b}{x}\right)}{b x^{2}}+\frac{2 \sinh \left(a+\frac{b}{x}\right)}{b^{2} x}
$$

Result(type 3, 93 leaves):

$$
-\frac{\left(a+\frac{b}{x}\right)^{2} \cosh \left(a+\frac{b}{x}\right)-2\left(a+\frac{b}{x}\right) \sinh \left(a+\frac{b}{x}\right)+2 \cosh \left(a+\frac{b}{x}\right)-2 a\left(\left(a+\frac{b}{x}\right) \cosh \left(a+\frac{b}{x}\right)-\sinh \left(a+\frac{b}{x}\right)\right)+a^{2} \cosh \left(a+\frac{b}{x}\right)}{b^{3}}
$$

Problem 13: Result unnecessarily involves higher level functions.

$$
\int(e x)^{m} \sinh \left(a+\frac{b}{x}\right) \mathrm{d} x
$$

Optimal(type 4, 61 leaves, 4 steps):

$$
-\frac{b \mathrm{e}^{a}\left(-\frac{b}{x}\right)^{m}(e x)^{m} \Gamma\left(-1-m,-\frac{b}{x}\right)}{2}-\frac{b\left(\frac{b}{x}\right)^{m}(e x)^{m} \Gamma\left(-1-m, \frac{b}{x}\right)}{2 \mathrm{e}^{a}}
$$

Result(type 5, 69 leaves):

$$
\frac{(e x)^{m} b \text { hypergeom }\left(\left[-\frac{m}{2}\right],\left[\frac{3}{2}, 1-\frac{m}{2}\right], \frac{b^{2}}{4 x^{2}}\right) \cosh (a)}{m}+\frac{(e x)^{m} x \text { hypergeom }\left(\left[-\frac{m}{2}-\frac{1}{2}\right],\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}\right], \frac{b^{2}}{4 x^{2}}\right) \sinh (a)}{1+m}
$$

Problem 19: Result unnecessarily involves higher level functions.

$$
\int x \sinh \left(a+b x^{n}\right) \mathrm{d} x
$$

Optimal(type 4, 73 leaves, 3 steps):

$$
-\frac{\mathrm{e}^{a} x^{2} \Gamma\left(\frac{2}{n},-b x^{n}\right)}{2 n\left(-b x^{n}\right)^{\frac{2}{n}}}+\frac{x^{2} \Gamma\left(\frac{2}{n}, b x^{n}\right)}{2 \mathrm{e}^{a} n\left(b x^{n}\right)^{\frac{2}{n}}}
$$

Result(type 5, 68 leaves):

$$
\frac{x^{2} \text { hypergeom }\left(\left[\frac{1}{n}\right],\left[\frac{1}{2}, 1+\frac{1}{n}\right], \frac{x^{2 n} b^{2}}{4}\right) \sinh (a)}{2}+\frac{x^{n+2} b \text { hypergeom }\left(\left[\frac{1}{2}+\frac{1}{n}\right],\left[\frac{3}{2}, \frac{3}{2}+\frac{1}{n}\right], \frac{x^{2 n} b^{2}}{4}\right) \cosh (a)}{n+2}
$$

Problem 20: Unable to integrate problem.

$$
\int x^{2} \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 101 leaves, 5 steps):

$$
-\frac{x^{3}}{6}-\frac{2^{-2-\frac{3}{n}} \mathrm{e}^{2 a} x^{3} \Gamma\left(\frac{3}{n},-2 b x^{n}\right)}{n\left(-b x^{n}\right)^{\frac{3}{n}}}-\frac{2^{-2-\frac{3}{n}} x^{3} \Gamma\left(\frac{3}{n}, 2 b x^{n}\right)}{\mathrm{e}^{2 a} n\left(b x^{n}\right)^{\frac{3}{n}}}
$$

Result(type 8, 16 leaves):

$$
\int x^{2} \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Problem 21: Unable to integrate problem.

$$
\int x \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 101 leaves, 5 steps):

$$
-\frac{x^{2}}{4}-\frac{4^{-1-\frac{1}{n}} \mathrm{e}^{2 a} x^{2} \Gamma\left(\frac{2}{n},-2 b x^{n}\right)}{n\left(-b x^{n}\right)^{\frac{2}{n}}}-\frac{4^{-1-\frac{1}{n}} x^{2} \Gamma\left(\frac{2}{n}, 2 b x^{n}\right)}{\mathrm{e}^{2 a} n\left(b x^{n}\right)^{\frac{2}{n}}}
$$

Result(type 8, 14 leaves):

$$
\int x \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Problem 22: Unable to integrate problem.

$$
\int \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 87 leaves, 5 steps):

$$
-\frac{x}{2}-\frac{2^{-2-\frac{1}{n}} \mathrm{e}^{2 a} x \Gamma\left(\frac{1}{n},-2 b x^{n}\right)}{n\left(-b x^{n}\right)^{\frac{1}{n}}}-\frac{2^{-2-\frac{1}{n}} x \Gamma\left(\frac{1}{n}, 2 b x^{n}\right)}{\mathrm{e}^{2 a} n\left(b x^{n}\right)^{\frac{1}{n}}}
$$

Result(type 8, 12 leaves):

$$
\int \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Problem 23: Unable to integrate problem.

$$
\int x \sinh \left(a+b x^{n}\right)^{3} \mathrm{~d} x
$$

Optimal(type 4, 164 leaves, 8 steps):

$$
-\frac{\mathrm{e}^{3 a} x^{2} \Gamma\left(\frac{2}{n},-3 b x^{n}\right)}{89^{\frac{1}{n}} n\left(-b x^{n}\right)^{\frac{2}{n}}}+\frac{3 \mathrm{e}^{a} x^{2} \Gamma\left(\frac{2}{n},-b x^{n}\right)}{8 n\left(-b x^{n}\right)^{\frac{2}{n}}}-\frac{3 x^{2} \Gamma\left(\frac{2}{n}, b x^{n}\right)}{8 \mathrm{e}^{a} n\left(b x^{n}\right)^{\frac{2}{n}}}+\frac{x^{2} \Gamma\left(\frac{2}{n}, 3 b x^{n}\right)}{89^{\frac{1}{n}} \mathrm{e}^{3 a} n\left(b x^{n}\right)^{\frac{2}{n}}}
$$

Result(type 8, 14 leaves):

$$
\int x \sinh \left(a+b x^{n}\right)^{3} \mathrm{~d} x
$$

Problem 24: Unable to integrate problem.

$$
\int(e x)^{m} \sinh \left(a+b x^{n}\right)^{3} \mathrm{~d} x
$$

Optimal(type 4, 216 leaves, 8 steps):

$$
-\frac{\mathrm{e}^{3 a}(e x)^{1+m} \Gamma\left(\frac{1+m}{n},-3 b x^{n}\right)}{83^{\frac{1+m}{n}} e n\left(-b x^{n}\right)^{\frac{1+m}{n}}}+\frac{3 \mathrm{e}^{a}(e x)^{1+m} \Gamma\left(\frac{1+m}{n},-b x^{n}\right)}{8 e n\left(-b x^{n}\right)^{\frac{1+m}{n}}}-\frac{3(e x)^{1+m} \Gamma\left(\frac{1+m}{n}, b x^{n}\right)}{8 e \mathrm{e}^{a} n\left(b x^{n}\right)^{\frac{1+m}{n}}}+\frac{(e x)^{1+m} \Gamma\left(\frac{1+m}{n}, 3 b x^{n}\right)}{83^{\frac{1+m}{n}} e \mathrm{e}^{3 a} n\left(b x^{n}\right)}
$$

Result(type 8, 18 leaves):

$$
\int(e x)^{m} \sinh \left(a+b x^{n}\right)^{3} \mathrm{~d} x
$$

Problem 25: Unable to integrate problem.

$$
\int(e x)^{m} \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 145 leaves, 5 steps):

$$
-\frac{(e x)^{1+m}}{2 e(1+m)}-\frac{\mathrm{e}^{2 a}(e x)^{1+m} \Gamma\left(\frac{1+m}{n},-2 b x^{n}\right)}{2^{\frac{1+m+2 n}{n}} e n\left(-b x^{n}\right)^{\frac{1+m}{n}}}-\frac{(e x)^{1+m} \Gamma\left(\frac{1+m}{n}, 2 b x^{n}\right)}{2^{\frac{1+m+2 n}{n}} e \mathrm{e}^{2 a} n\left(b x^{n}\right)^{\frac{1+m}{n}}}
$$

Result(type 8, 18 leaves):

$$
\int(e x)^{m} \sinh \left(a+b x^{n}\right)^{2} \mathrm{~d} x
$$

Problem 29: Unable to integrate problem.

$$
\int \frac{\sinh \left(a+b(d x+c)^{1 / 3}\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 180 leaves, 13 steps):
$-\cosh \left(a+b c^{1 / 3}\right) \operatorname{Shi}\left(b\left(c^{1 / 3}-(d x+c)^{1 / 3}\right)\right)-\cosh \left(a+(-1)^{2 / 3} b c^{1 / 3}\right) \operatorname{Shi}\left(b\left((-1)^{2 / 3} c^{1 / 3}-(d x+c)^{1 / 3}\right)\right)+\cosh (a$
$\left.-(-1)^{1 / 3} b c^{1 / 3}\right) \operatorname{Shi}\left(b\left((-1)^{1 / 3} c^{1 / 3}+(d x+c)^{1 / 3}\right)\right)+\operatorname{Chi}\left(b\left(c^{1 / 3}-(d x+c)^{1 / 3}\right)\right) \sinh \left(a+b c^{1 / 3}\right)+\operatorname{Chi}\left(b\left((-1)^{1 / 3} c^{1 / 3}+(d x\right.\right.$ $\left.\left.+c)^{1 / 3}\right)\right) \sinh \left(a-(-1)^{1 / 3} b c^{1 / 3}\right)+\operatorname{Chi}\left(-b\left((-1)^{2 / 3} c^{1 / 3}-(d x+c)^{1 / 3}\right)\right) \sinh \left(a+(-1)^{2 / 3} b c^{1 / 3}\right)$
Result(type 8, 18 leaves):

$$
\int \frac{\sinh \left(a+b(d x+c)^{1 / 3}\right)}{x} \mathrm{~d} x
$$

Problem 30: Unable to integrate problem.

$$
\int \frac{\sinh \left(a+b(d x+c)^{1 / 3}\right)}{x^{2}} d x
$$

Optimal(type 4, 243 leaves, 14 steps):
$\frac{b d \operatorname{Chi}\left(b\left(c^{1 / 3}-(d x+c)^{1 / 3}\right)\right) \cosh \left(a+b c^{1 / 3}\right)}{3 c^{2 / 3}}-\frac{(-1)^{1 / 3} b d \operatorname{Chi}\left(b\left((-1)^{1 / 3} c^{1 / 3}+(d x+c)^{1 / 3}\right)\right) \cosh \left(a-(-1)^{1 / 3} b c^{1 / 3}\right)}{3 c^{2 / 3}}$

$$
\begin{aligned}
& +\frac{(-1)^{2 / 3} b d \operatorname{Chi}\left(-b\left((-1)^{2 / 3} c^{1 / 3}-(d x+c)^{1 / 3}\right)\right) \cosh \left(a+(-1)^{2 / 3} b c^{1 / 3}\right)}{3 c^{2 / 3}}-\frac{b d \operatorname{Shi}\left(b\left(c^{1 / 3}-(d x+c)^{1 / 3}\right)\right) \sinh \left(a+b c^{1 / 3}\right)}{3 c^{2 / 3}} \\
& -\frac{(-1)^{1 / 3} b d \operatorname{Shi}\left(b\left((-1)^{1 / 3} c^{1 / 3}+(d x+c)^{1 / 3}\right)\right) \sinh \left(a-(-1)^{1 / 3} b c^{1 / 3}\right)}{3 c^{2 / 3}} \\
& -\frac{(-1)^{2 / 3} b d \operatorname{Shi}\left(b\left((-1)^{2 / 3} c^{1 / 3}-(d x+c)^{1 / 3}\right)\right) \sinh \left(a+(-1)^{2 / 3} b c^{1 / 3}\right)}{3 c^{2 / 3}}-\frac{\sinh \left(a+b(d x+c)^{1 / 3}\right)}{x}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int \frac{\sinh \left(a+b(d x+c)^{1 / 3}\right)}{x^{2}} d x
$$

Test results for the 11 problems in "6.1.4 (d+e $x)^{\wedge} m \sinh \left(a+b x+c x^{\wedge} 2\right)^{\wedge} n . t x t^{\prime \prime}$

Problem 4: Unable to integrate problem.

$$
\int\left(-\frac{b \cosh \left(-c x^{2}+b x+a\right)}{x}+\frac{\sinh \left(-c x^{2}+b x+a\right)}{x^{2}}\right) \mathrm{d} x
$$

Optimal(type 4, 82 leaves, 7 steps):

$$
-\frac{\sinh \left(-c x^{2}+b x+a\right)}{x}+\frac{\mathrm{e}^{a+\frac{b^{2}}{4 c}} \operatorname{erf}\left(\frac{-2 c x+b}{2 \sqrt{c}}\right) \sqrt{c} \sqrt{\pi}}{2}+\frac{\mathrm{e}^{-a-\frac{b^{2}}{4 c}} \operatorname{erfi}\left(\frac{-2 c x+b}{2 \sqrt{c}}\right) \sqrt{c} \sqrt{\pi}}{2}
$$

Result(type 8, 37 leaves):

$$
\int\left(-\frac{b \cosh \left(-c x^{2}+b x+a\right)}{x}+\frac{\sinh \left(-c x^{2}+b x+a\right)}{x^{2}}\right) \mathrm{d} x
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int(e x+d) \sinh \left(c x^{2}+b x+a\right) \mathrm{d} x
$$

Optimal(type 4, 100 leaves, 6 steps):

$$
\frac{e \cosh \left(c x^{2}+b x+a\right)}{2 c}-\frac{(-b e+2 d c) \mathrm{e}^{-a+\frac{b^{2}}{4 c}} \operatorname{erf}\left(\frac{2 c x+b}{2 \sqrt{c}}\right) \sqrt{\pi}}{8 c^{3 / 2}}+\frac{(-b e+2 d c) \mathrm{e}^{a-\frac{b^{2}}{4 c}} \operatorname{erfi}\left(\frac{2 c x+b}{2 \sqrt{c}}\right) \sqrt{\pi}}{8 c^{3 / 2}}
$$

Result(type 4, 210 leaves):

$$
-\frac{d \sqrt{\pi} \mathrm{e}^{-\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(\sqrt{c} x+\frac{b}{2 \sqrt{c}}\right)}{4 \sqrt{c}}+\frac{e \mathrm{e}^{-c x^{2}-b x-a}}{4 c}+\frac{e b \sqrt{\pi} \mathrm{e}^{-\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(\sqrt{c} x+\frac{b}{2 \sqrt{c}}\right)}{8 c^{3 / 2}}-\frac{d \sqrt{\pi} \mathrm{e}^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c} x+\frac{b}{2 \sqrt{-c}}\right)}{4 \sqrt{-c}}
$$

$$
+\frac{e \mathrm{e}^{c x^{2}+b x+a}}{4 c}+\frac{e b \sqrt{\pi} \mathrm{e}^{\frac{4 a c-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c} x+\frac{b}{2 \sqrt{-c}}\right)}{8 c \sqrt{-c}}
$$

Test results for the 100 problems in "6.1.5 Hyperbolic sine functions.txt"
Problem 12: Unable to integrate problem.

$$
\int \frac{1}{(b \sinh (d x+c))^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 5, 50 leaves, 1 step):


Result(type 8, 12 leaves):

$$
\int \frac{1}{(b \sinh (d x+c))^{2 / 3}} \mathrm{~d} x
$$

Problem 13: Unable to integrate problem.

$$
\int(-\mathrm{I} \sinh (d x+c))^{n} \mathrm{~d} x
$$

Optimal(type 5, 64 leaves, 1 step):

$$
\frac{I \cosh (d x+c) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{n}{2}+\frac{1}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right],-\sinh (d x+c)^{2}\right)(-\mathrm{I} \sinh (d x+c))^{n+1}}{d(n+1) \sqrt{\cosh (d x+c)^{2}}}
$$

Result(type 8, 13 leaves):

$$
\int(-\mathrm{I} \sinh (d x+c))^{n} \mathrm{~d} x
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{3}}{\mathrm{I}+\sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 30 leaves, 2 steps):

$$
-\frac{3 x}{2}-2 \mathrm{I} \cosh (x)+\frac{3 \cosh (x) \sinh (x)}{2}-\frac{\cosh (x) \sinh (x)^{2}}{\mathrm{I}+\sinh (x)}
$$

Result(type 3, 92 leaves):

$$
\begin{aligned}
& \frac{1}{2\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{\mathrm{I}}{\tanh \left(\frac{x}{2}\right)-1}+\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2}+\frac{2}{\tanh \left(\frac{x}{2}\right)+\mathrm{I}}+\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{1}{\tanh \left(\frac{x}{2}\right)+1} \\
& -\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2}
\end{aligned}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{3}}{(\mathrm{I}+\sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 36 leaves, 6 steps):

$$
-2 \mathrm{I} x+\frac{4 \cosh (x)}{3}-\frac{\cosh (x) \sinh (x)^{2}}{3(\mathrm{I}+\sinh (x))^{2}}+\frac{2 \mathrm{I} \cosh (x)}{\mathrm{I}+\sinh (x)}
$$

Result(type 3, 74 leaves):

$$
2 \mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)-\frac{1}{\tanh \left(\frac{x}{2}\right)-1}+\frac{4 \mathrm{I}}{3\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{3}}+\frac{4 \mathrm{I}}{\tanh \left(\frac{x}{2}\right)+\mathrm{I}}-\frac{2}{\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{2}}-2 \mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)+\frac{1}{\tanh \left(\frac{x}{2}\right)+1}
$$

Problem 20: Unable to integrate problem.

$$
\int \frac{\sinh (x)}{\sqrt{a+\mathrm{I} a \sinh (x)}} \mathrm{d} x
$$

Optimal(type 3, 44 leaves, 3 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{\cosh (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a+\mathrm{I} a \sinh (x)}}\right) \sqrt{2}}{\sqrt{a}}+\frac{2 \cosh (x)}{\sqrt{a+\mathrm{I} a \sinh (x)}}
$$

Result(type 8, 113 leaves):

$$
\frac{\left(\mathrm{e}^{x}-\mathrm{I}\right)^{2} \sqrt{2}}{\sqrt{\frac{a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}+2 \mathrm{e}^{x}-\mathrm{I}\right)}{\mathrm{e}^{x}}} \mathrm{e}^{x}}+\frac{\left(\int-\frac{2}{\sqrt{a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}+2 \mathrm{e}^{x}-\mathrm{I}\right) \mathrm{e}^{x}}} \mathrm{~d} x\right) \sqrt{2} \sqrt{a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}+2 \mathrm{e}^{x}-\mathrm{I}\right) \mathrm{e}^{x}}}{2 \sqrt{\frac{a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}+2 \mathrm{e}^{x}-\mathrm{I}\right)}{\mathrm{e}^{x}}} \mathrm{e}^{x}}
$$

Problem 21: Unable to integrate problem.

$$
\int \frac{\sinh (x)}{\sqrt{a-\mathrm{I} a \sinh (x)}} \mathrm{d} x
$$

Optimal(type 3, 44 leaves, 3 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{\cosh (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a-\mathrm{I} a \sinh (x)}}\right) \sqrt{2}}{\sqrt{a}}+\frac{2 \cosh (x)}{\sqrt{a-\mathrm{I} a \sinh (x)}}
$$

Result(type 8, 117 leaves):

$$
\frac{\left(\mathrm{e}^{x}+\mathrm{I}\right)^{2} \sqrt{2}}{\sqrt{-\frac{a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}-2 \mathrm{e}^{x}-\mathrm{I}\right)}{\mathrm{e}^{x}}} \mathrm{e}^{x}}+\frac{\left(\int-\frac{2}{\sqrt{-a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}-2 \mathrm{e}^{x}-\mathrm{I}\right) \mathrm{e}^{x}}} \mathrm{dx}\right) \sqrt{2} \sqrt{-a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}-2 \mathrm{e}^{x}-\mathrm{I}\right) \mathrm{e}^{x}}}{2 \sqrt{-\frac{a\left(\mathrm{I}\left(\mathrm{e}^{x}\right)^{2}-2 \mathrm{e}^{x}-\mathrm{I}\right)}{\mathrm{e}^{x}}} \mathrm{e}^{x}}
$$

Problem 22: Unable to integrate problem.

$$
\int(a+\mathrm{I} a \sinh (d x+c))^{5 / 2} \mathrm{~d} x
$$

Optimal (type 3, 86 leaves, 3 steps):

$$
\frac{2 \mathrm{I} a \cosh (d x+c)(a+\mathrm{I} a \sinh (d x+c))^{3 / 2}}{5 d}+\frac{64 \mathrm{I} a^{3} \cosh (d x+c)}{15 d \sqrt{a+\mathrm{I} a \sinh (d x+c)}}+\frac{16 \mathrm{I} a^{2} \cosh (d x+c) \sqrt{a+\mathrm{I} a \sinh (d x+c)}}{15 d}
$$

Result(type 8, 16 leaves):

$$
\int(a+\mathrm{I} a \sinh (d x+c))^{5 / 2} \mathrm{~d} x
$$

Problem 23: Unable to integrate problem.

$$
\int \frac{1}{(a+\mathrm{I} a \sinh (d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 68 leaves, 3 steps):

$$
\frac{\mathrm{I} \cosh (d x+c)}{2 d(a+\mathrm{I} a \sinh (d x+c))^{3 / 2}}+\frac{\mathrm{I} \operatorname{arctanh}\left(\frac{\cosh (d x+c) \sqrt{a} \sqrt{2}}{2 \sqrt{a+\mathrm{I} a \sinh (d x+c)}}\right) \sqrt{2}}{4 a^{3 / 2} d}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{(a+\mathrm{I} a \sinh (d x+c))^{3 / 2}} \mathrm{~d} x
$$

Problem 31: Unable to integrate problem.

$$
\int(a+\mathrm{I} a \sinh (x))^{3 / 2}(A+B \sinh (x)) \mathrm{d} x
$$

Optimal(type 3, 64 leaves, 3 steps):

$$
\frac{2 B \cosh (x)(a+\mathrm{I} a \sinh (x))^{3 / 2}}{5}+\frac{8 a^{2}(5 \mathrm{I} A+3 B) \cosh (x)}{15 \sqrt{a+\mathrm{I} a \sinh (x)}}+\frac{2 a(5 \mathrm{I} A+3 B) \cosh (x) \sqrt{a+\mathrm{I} a \sinh (x)}}{15}
$$

Result(type 8, 19 leaves):

$$
\int(a+\mathrm{I} a \sinh (x))^{3 / 2}(A+B \sinh (x)) \mathrm{d} x
$$

Problem 37: Unable to integrate problem.

$$
\int \frac{A+B \sinh (x)}{(a+\mathrm{I} a \sinh (x))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 60 leaves, 3 steps):

$$
\frac{(\mathrm{I} A-B) \cosh (x)}{2(a+\mathrm{I} a \sinh (x))^{3 / 2}}+\frac{(\mathrm{I} A+3 B) \operatorname{arctanh}\left(\frac{\cosh (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a+\mathrm{I} a \sinh (x)}}\right) \sqrt{2}}{4 a^{3 / 2}}
$$

Result(type 8, 19 leaves):

$$
\int \frac{A+B \sinh (x)}{(a+\mathrm{I} a \sinh (x))^{3 / 2}} \mathrm{~d} x
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int(a+b \sinh (x))^{5 / 2}(A+B \sinh (x)) \mathrm{d} x
$$

Optimal(type 4, 279 leaves, 8 steps):
$\frac{2(7 A b+5 a B) \cosh (x)(a+b \sinh (x))^{3 / 2}}{35}+\frac{2 B \cosh (x)(a+b \sinh (x))^{5} / 2}{7}+\frac{2\left(56 a A b+15 a^{2} B-25 b^{2} B\right) \cosh (x) \sqrt{a+b \sinh (x)}}{105}$

$$
\begin{aligned}
& +\frac{2 \mathrm{I}\left(161 a^{2} A b-63 A b^{3}+15 a^{3} B-145 a b^{2} B\right) \sqrt{\sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)^{2}} \operatorname{EllipticE}\left(\cos \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right), \sqrt{2} \sqrt{\frac{b}{\mathrm{I} a+b}}\right) \sqrt{a+b \sinh (x)}}{105 \sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right) b \sqrt{\frac{a+b \sinh (x)}{a-\mathrm{I} b}}} \\
& -\frac{2 \mathrm{I}\left(a^{2}+b^{2}\right)\left(56 a A b+15 a^{2} B-25 b^{2} B\right) \sqrt{\sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right), \sqrt{2} \sqrt{\left.\frac{b}{\mathrm{I} a+b}\right) \sqrt{\frac{a+b \sinh (x)}{a-\mathrm{I} b}}}\right.}{105 \sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right) b \sqrt{a+b \sinh (x)}}
\end{aligned}
$$

Result(type 4, 1892 leaves):
$\frac{1}{105 b^{2} \cosh (x) \sqrt{a+b \sinh (x)}}\left(2\left(63 A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \operatorname{EllipticE}\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}, \sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} b^{5}\right.\right.$
$-15 B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}$ EllipticE $\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}, \sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{5}$
$-63 A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}$ EllipticF $\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}, \sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} b^{5}+15 B b^{5} \sinh (x)^{5}+21 A b^{5} \sinh (x)^{4}$
$-10 B b^{5} \sinh (x)^{3}+21 A b^{5} \sinh (x)^{2}-25 B b^{5} \sinh (x)+60 B a b^{4} \sinh (x)^{4}+98 A a b^{4} \sinh (x)^{3}+90 B a^{2} b^{3} \sinh (x)^{3}+77 A a^{2} b^{3} \sinh (x)^{2}$
$+45 B a^{3} b^{2} \sinh (x)^{2}+35 B a b^{4} \sinh (x)^{2}+98 A a b^{4} \sinh (x)+90 B a^{2} b^{3} \sinh (x)+15$ I $B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \operatorname{EllipticF}\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right.$,
$\left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{4} b-10 \mathrm{I} B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}$ EllipticF $\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right.$,

$$
\begin{aligned}
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{2} b^{3}+56 \mathrm{I} A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticF }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}},\right. \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{3} b^{2}-25 \mathrm{I} B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticF }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} b^{5}+42 A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticF }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}},\right. \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{2} b^{3}-98 A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticE }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{2} b^{3}-120 B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticF }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{3} b^{2}-120 B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticF }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a b^{4}+130 B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticE }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{3} b^{2}+145 B \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticE }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a b^{4}+105 A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticF }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{4} b-161 A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticE }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a^{4} b+56 \mathrm{I} A \sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}} \text { EllipticF }\left(\sqrt{-\frac{a+b \sinh (x)}{\mathrm{I} b-a}}\right. \text {, } \\
& \left.\left.\left.\sqrt{-\frac{\mathrm{I} b-a}{\mathrm{I} b+a}}\right) \sqrt{\frac{(\mathrm{I}-\sinh (x)) b}{\mathrm{I} b+a}} \sqrt{\frac{(\mathrm{I}+\sinh (x)) b}{\mathrm{I} b-a}} a b^{4}+77 A a^{2} b^{3}+45 B a^{3} b^{2}-25 B a b^{4}\right)\right)
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \sinh (x)}{(a+b \sinh (x))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 118 leaves, 6 steps):

$$
-\frac{\left(2 a^{2} A-A b^{2}+3 a b B\right) \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{5 / 2}}-\frac{(A b-a B) \cosh (x)}{2\left(a^{2}+b^{2}\right)(a+b \sinh (x))^{2}}-\frac{\left(3 a A b-a^{2} B+2 b^{2} B\right) \cosh (x)}{2\left(a^{2}+b^{2}\right)^{2}(a+b \sinh (x))}
$$

Result(type 3, 313 leaves):

$$
\begin{aligned}
& -\frac{1}{\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)^{2}}\left(2 \left(-\frac{b\left(5 a^{2} A b+2 A b^{3}-3 a^{3} B\right) \tanh \left(\frac{x}{2}\right)^{3}}{2 a\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}\right.\right. \\
& -\frac{\left(4 A a^{4} b-7 A a^{2} b^{3}-2 A b^{5}-2 B a^{5}+5 B a^{3} b^{2}-2 B a b^{4}\right) \tanh \left(\frac{x}{2}\right)^{2}}{2\left(a^{4}+2 b^{2} a^{2}+b^{4}\right) a^{2}}+\frac{b\left(11 a^{2} A b+2 A b^{3}-5 a^{3} B+4 a b^{2} B\right) \tanh \left(\frac{x}{2}\right)}{2\left(a^{4}+2 b^{2} a^{2}+b^{4}\right) a} \\
& \left.\left.\quad+\frac{4 a^{2} A b+A b^{3}-2 a^{3} B+a b^{2} B}{2\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)}\right)\right)+\frac{\left(2 a^{2} A-A b^{2}+3 a b B\right) \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{\left(a^{4}+2 b^{2} a^{2}+b^{4}\right) \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Problem 42: Unable to integrate problem.

$$
\int\left(a \sinh (x)^{3}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 89 leaves, 5 steps):

$$
-\frac{14 a \cosh (x) \sqrt{a \sinh (x)^{3}}}{45}+\frac{2 a \cosh (x) \sinh (x)^{2} \sqrt{a \sinh (x)^{3}}}{9}+\frac{14 \mathrm{I} a \operatorname{csch}(x) \sqrt{\sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)^{2}} \mathrm{EllipticE}\left(\cos \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right), \sqrt{2}\right) \sqrt{a \sinh (x)^{3}}}{15 \sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right) \sqrt{\mathrm{I} \sinh (x)}}
$$

Result(type 8, 10 leaves):

$$
\int\left(a \sinh (x)^{3}\right)^{3 / 2} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \sqrt{a \sinh (x)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 72 leaves, 4 steps):

$$
\frac{2 \operatorname{coth}(x) \sqrt{a \sinh (x)^{3}}}{3}-\frac{2 \mathrm{I} \operatorname{csch}(x)^{2} \sqrt{\sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right), \sqrt{2}\right) \sqrt{\mathrm{I} \sinh (x)} \sqrt{a \sinh (x)^{3}}}{3 \sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)}
$$

Result(type 8, 10 leaves):

$$
\int \sqrt{a \sinh (x)^{3}} \mathrm{~d} x
$$

Problem 45: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{a \sinh (x)^{4}}} d x
$$

Optimal(type 3, 14 leaves, 3 steps):

$$
-\frac{\cosh (x) \sinh (x)}{\sqrt{a \sinh (x)^{4}}}
$$

Result(type 3, 49 leaves):

$$
-\frac{\sqrt{a(-1+\cosh (2 x))(\cosh (2 x)+1)} \sqrt{a \sinh (2 x)^{2}}}{a \sinh (2 x) \sqrt{a(-1+\cosh (2 x))^{2}}}
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}}{\mathrm{I}+\sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 18 leaves, 3 steps):

$$
-\frac{\mathrm{I} \operatorname{sech}(x)}{3(\mathrm{I}+\sinh (x))}-\frac{2 \mathrm{I} \tanh (x)}{3}
$$

Result (type 3, 48 leaves):

$$
-\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{2}}+\frac{2 \mathrm{I}}{3\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{3}}-\frac{3 \mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)}-\frac{\mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)}
$$

Problem 49: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{6}}{a+b \sinh (x)} d x
$$

Optimal(type 3, 132 leaves, 7 steps):
$-\frac{a\left(8 a^{4}+20 b^{2} a^{2}+15 b^{4}\right) x}{8 b^{6}}-\frac{2\left(a^{2}+b^{2}\right)^{5 / 2} \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{b^{6}}+\frac{\cosh (x)^{5}}{5 b}+\frac{\cosh (x)^{3}\left(4 a^{2}+4 b^{2}-3 a b \sinh (x)\right)}{12 b^{3}}$
$+\frac{\cosh (x)\left(8\left(a^{2}+b^{2}\right)^{2}-a b\left(4 a^{2}+7 b^{2}\right) \sinh (x)\right)}{8 b^{5}}$
Result(type 3, 673 leaves):

$$
\begin{aligned}
& \frac{a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{5 a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{9 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{a^{5} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{b^{6}}-\frac{5 a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2 b^{4}} \\
& -\frac{a}{4 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}-\frac{a^{2}}{3 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}} \\
& -\frac{11 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{a^{4}}{b^{5}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{5 a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{9 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& +\frac{a^{5} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b^{6}}+\frac{5 a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 b^{4}}+\frac{15 a \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{8 b^{2}}-\frac{15 a \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{8 b^{2}}+\frac{a}{4 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}} \\
& +\frac{a^{2}}{3 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{11 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}} \\
& -\frac{13}{12 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}+\frac{13}{12 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{1}{5 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{5}}+\frac{1}{5 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}}-\frac{15}{8 b\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& +\frac{15}{8 b\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{9}{8 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{9}{8 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}} \\
& +\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}+\frac{6 a^{2} \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right) a^{6}}{b^{6} \sqrt{a^{2}+b^{2}}} \\
& +\frac{6 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right) a^{4}}{b^{4} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{4}}{a+b \sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 86 leaves, 6 steps):

$$
-\frac{a\left(2 a^{2}+3 b^{2}\right) x}{2 b^{4}}-\frac{2\left(a^{2}+b^{2}\right)^{3 / 2} \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{b^{4}}+\frac{\cosh (x)^{3}}{3 b}+\frac{\cosh (x)\left(2 a^{2}+2 b^{2}-a b \sinh (x)\right)}{2 b^{3}}
$$

Result(type 3, 335 leaves):

$$
\begin{aligned}
& -\frac{1}{3 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{3}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& +\frac{a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b^{4}}+\frac{3 a \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 b^{2}}+\frac{1}{3 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}} \\
& +\frac{a^{2}}{b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{3}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{b^{4}}-\frac{3 a \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2 b^{2}} \\
& +\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right) a^{4}}{b^{4} \sqrt{a^{2}+b^{2}}}+\frac{4 a^{2} \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{4}}{a+b \sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 90 leaves, 6 steps):

$$
-\frac{2 b^{4} \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{\left(a^{2}+b^{2}\right)^{5 / 2}}+\frac{\operatorname{sech}(x)^{3}(b+a \sinh (x))}{3\left(a^{2}+b^{2}\right)}+\frac{\operatorname{sech}(x)\left(3 b^{3}+a\left(2 a^{2}+5 b^{2}\right) \sinh (x)\right)}{3\left(a^{2}+b^{2}\right)^{2}}
$$

Result(type 3, 181 leaves):
$-\frac{1}{\left(a^{4}+2 b^{2} a^{2}+b^{4}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}\left(2\left(\left(-a^{3}-2 b^{2} a\right) \tanh \left(\frac{x}{2}\right)^{5}+\left(-a^{2} b-2 b^{3}\right) \tanh \left(\frac{x}{2}\right)^{4}+\left(-\frac{2}{3} a^{3}-\frac{8}{3} b^{2} a\right) \tanh \left(\frac{x}{2}\right)^{3}-2 \tanh \left(\frac{x}{2}\right)^{2} b^{3}\right.\right.$

$$
\left.\left.+\left(-a^{3}-2 b^{2} a\right) \tanh \left(\frac{x}{2}\right)-\frac{a^{2} b}{3}-\frac{4 b^{3}}{3}\right)\right)+\frac{2 b^{4} \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{\left(a^{4}+2 b^{2} a^{2}+b^{4}\right) \sqrt{a^{2}+b^{2}}}
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{4}}{(a+b \sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 84 leaves, 6 steps):

$$
\frac{3\left(2 a^{2}+b^{2}\right) x}{2 b^{4}}-\frac{3 \cosh (x)(2 a-b \sinh (x))}{2 b^{3}}-\frac{\cosh (x)^{3}}{b(a+b \sinh (x))}+\frac{6 a \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{b^{4}}
$$

Result(type 3, 289 leaves):

$$
\begin{aligned}
& \frac{1}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{1}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{2 a}{b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right) a^{2}}{b^{4}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 b^{2}}-\frac{2 a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}} \\
& +\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right) a^{2}}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{1}{2 b^{2}}+\frac{2 a \tanh \left(\frac{x}{2}\right)}{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)} \\
& +\frac{2 \tanh \left(\frac{x}{2}\right)}{\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right) a}+\frac{b^{2}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}{b\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)} \\
& \\
& -\frac{6 a \sqrt{a^{2}+b^{2}} \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{}
\end{aligned}
$$

Problem 55: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{4}}{\mathrm{I}+\sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 24 leaves, 6 steps):

$$
-\operatorname{sech}(x)+\frac{2 \operatorname{sech}(x)^{3}}{3}-\frac{\operatorname{sech}(x)^{5}}{5}-\frac{\mathrm{I} \tanh (x)^{5}}{5}
$$

Result(type 3, 92 leaves):

$$
\begin{aligned}
& \frac{\mathrm{I}}{3\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{3}}-\frac{2 \mathrm{I}}{5\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{5}}-\frac{3 \mathrm{I}}{8\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)}+\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{4}}+\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{2}}+\frac{3 \mathrm{I}}{8\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)} \\
& +\frac{\mathrm{I}}{6\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)^{3}}+\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)^{2}}
\end{aligned}
$$

Problem 56: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{6}}{\mathrm{I}+\sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 27 leaves, 6 steps):

$$
-\frac{3 \operatorname{arctanh}(\cosh (x))}{8}+\frac{I \operatorname{coth}(x)^{5}}{5}-\frac{3 \operatorname{coth}(x) \operatorname{csch}(x)}{8}-\frac{\operatorname{coth}(x)^{3} \operatorname{csch}(x)}{4}
$$

Result(type 3, 92 leaves):

$$
\begin{aligned}
& \frac{\mathrm{Itanh}\left(\frac{x}{2}\right)}{16}+\frac{\mathrm{I} \tanh \left(\frac{x}{2}\right)^{5}}{160}+\frac{\tanh \left(\frac{x}{2}\right)^{4}}{64}+\frac{\mathrm{I} \tanh \left(\frac{x}{2}\right)^{3}}{32}+\frac{\tanh \left(\frac{x}{2}\right)^{2}}{8}+\frac{\mathrm{I}}{160 \tanh \left(\frac{x}{2}\right)^{5}}-\frac{1}{64 \tanh \left(\frac{x}{2}\right)^{4}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{8}-\frac{1}{8 \tanh \left(\frac{x}{2}\right)^{2}} \\
& \quad+\frac{\mathrm{I}}{32 \tanh \left(\frac{x}{2}\right)^{3}}+\frac{\mathrm{I}}{16 \tanh \left(\frac{x}{2}\right)}
\end{aligned}
$$

Problem 57: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{2}}{(\mathrm{I}+\sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 27 leaves, 10 steps):

$$
\frac{2 I \operatorname{sech}(x)^{3}}{3}-\frac{2 I \operatorname{sech}(x)^{5}}{5}-\frac{\tanh (x)^{3}}{3}+\frac{2 \tanh (x)^{5}}{5}
$$

Result(type 3, 69 leaves):

$$
\frac{2 \mathrm{I}}{\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{4}}-\frac{\mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{2}}+\frac{4}{5\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{5}}-\frac{5}{3\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{3}}-\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)}+\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)}
$$

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)}{(\mathrm{I}+\sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 26 leaves, 4 steps):

$$
-\frac{I \arctan (\sinh (x))}{4}-\frac{1}{4(I+\sinh (x))^{2}}-\frac{I}{4(I+\sinh (x))}
$$

Result (type 3, 65 leaves):

$$
\frac{2 \mathrm{I}}{\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{3}}-\frac{\mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)}+\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{4}}-\frac{3}{2\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)}{4}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)}{4}
$$

Problem 59: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{4}}{(\mathrm{I}+\sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 24 leaves, 9 steps):

$$
-\mathrm{I} \operatorname{arctanh}(\cosh (x))-2 \operatorname{coth}(x)+\frac{\operatorname{coth}(x)^{3}}{3}+\mathrm{I} \operatorname{coth}(x) \operatorname{csch}(x)
$$

Result (type 3, 57 leaves):

$$
-\frac{7 \tanh \left(\frac{x}{2}\right)}{8}+\frac{\tanh \left(\frac{x}{2}\right)^{3}}{24}-\frac{\mathrm{I} \tanh \left(\frac{x}{2}\right)^{2}}{4}+\mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)\right)+\frac{\mathrm{I}}{4 \tanh \left(\frac{x}{2}\right)^{2}}+\frac{1}{24 \tanh \left(\frac{x}{2}\right)^{3}}-\frac{7}{8 \tanh \left(\frac{x}{2}\right)}
$$

Problem 63: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{2}}{a+b \sinh (x)} \mathrm{d} x
$$

Optimal (type 3, 50 leaves, 7 steps):

$$
\frac{b \operatorname{arctanh}(\cosh (x))}{a^{2}}-\frac{\operatorname{coth}(x)}{a}-\frac{2 \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a^{2}}
$$

Result(type 3, 106 leaves):

$$
-\frac{\tanh \left(\frac{x}{2}\right)}{2 a}-\frac{1}{2 a \tanh \left(\frac{x}{2}\right)}-\frac{b \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{a^{2}}+\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}+\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right) b^{2}}{a^{2} \sqrt{a^{2}+b^{2}}}
$$

Problem 65: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)}{(a+b \sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 85 leaves, 6 steps):

$$
\frac{2 a b \arctan (\sinh (x))}{\left(a^{2}+b^{2}\right)^{2}}+\frac{\left(a^{2}-b^{2}\right) \ln (\cosh (x))}{\left(a^{2}+b^{2}\right)^{2}}-\frac{\left(a^{2}-b^{2}\right) \ln (a+b \sinh (x))}{\left(a^{2}+b^{2}\right)^{2}}+\frac{a}{\left(a^{2}+b^{2}\right)(a+b \sinh (x))}
$$

$$
\begin{aligned}
& \frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{2}}{2 a^{4}+4 b^{2} a^{2}+2 b^{4}}-\frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) b^{2}}{2 a^{4}+4 b^{2} a^{2}+2 b^{4}}+\frac{8 a b \arctan \left(\tanh \left(\frac{x}{2}\right)\right)}{2 a^{4}+4 b^{2} a^{2}+2 b^{4}}+\frac{2 \tanh \left(\frac{x}{2}\right) a^{2} b}{\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)} \\
& \quad+\frac{2 \tanh \left(\frac{x}{2}\right) b^{3}}{\left(a^{2}+b^{2}\right)^{2}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right) a^{2}}{\left(a^{2}+b^{2}\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right) b^{2}}{\left(a^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{3}}{(a+b \sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 74 leaves, 3 steps):

$$
\frac{2 b \operatorname{csch}(x)}{a^{3}}-\frac{\operatorname{csch}(x)^{2}}{2 a^{2}}+\frac{\left(a^{2}+3 b^{2}\right) \ln (\sinh (x))}{a^{4}}-\frac{\left(a^{2}+3 b^{2}\right) \ln (a+b \sinh (x))}{a^{4}}+\frac{a^{2}+b^{2}}{a^{3}(a+b \sinh (x))}
$$

Result(type 3, 183 leaves):

$$
-\frac{\tanh \left(\frac{x}{2}\right)^{2}}{8 a^{2}}-\frac{\tanh \left(\frac{x}{2}\right) b}{a^{3}}-\frac{1}{8 a^{2} \tanh \left(\frac{x}{2}\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)\right)}{a^{2}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)\right) b^{2}}{a^{4}}+\frac{b}{a^{3} \tanh \left(\frac{x}{2}\right)}+\frac{2 \tanh \left(\frac{x}{2}\right) b}{a^{2}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}
$$

$$
+\frac{2 \tanh \left(\frac{x}{2}\right) b^{3}}{a^{4}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}{a^{2}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right) b^{2}}{a^{4}}
$$

Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{4}}{(a+b \sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 147 leaves, 8 steps):
$\frac{b\left(3 a^{2}+4 b^{2}\right) \operatorname{arctanh}(\cosh (x))}{a^{5}}-\frac{\left(7 a^{2}+12 b^{2}\right) \operatorname{coth}(x)}{3 a^{4}}+\frac{\left(a^{2}+2 b^{2}\right) \operatorname{coth}(x) \operatorname{csch}(x)}{a^{3} b}-\frac{\left(3+\frac{4 b^{2}}{a^{2}}\right) \operatorname{coth}(x) \operatorname{csch}(x)}{3 b(a+b \sinh (x))}-\frac{\operatorname{coth}(x) \operatorname{csch}(x)^{2}}{3 a(a+b \sinh (x))}$ $-\frac{2\left(a^{2}+4 b^{2}\right) \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a^{5}}$
Result(type 3, 356 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{x}{2}\right)^{3}}{24 a^{2}}-\frac{\tanh \left(\frac{x}{2}\right)^{2} b}{4 a^{3}}-\frac{5 \tanh \left(\frac{x}{2}\right)}{8 a^{2}}-\frac{3 \tanh \left(\frac{x}{2}\right) b^{2}}{2 a^{4}}-\frac{1}{24 \tanh \left(\frac{x}{2}\right)^{3} a^{2}}-\frac{5}{8 a^{2} \tanh \left(\frac{x}{2}\right)}-\frac{3 b^{2}}{2 a^{4} \tanh \left(\frac{x}{2}\right)}+\frac{b}{4 \tanh \left(\frac{x}{2}\right)^{2} a^{3}} \\
& -\frac{3 b \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{a^{3}}-\frac{4 b^{3} \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{a^{5}}+\frac{2 \tanh \left(\frac{x}{2}\right) b^{2}}{a^{3}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}+\frac{2 \tanh \left(\frac{x}{2}\right) b^{4}}{a^{5}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)} \\
& +\frac{2 b}{a^{2}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}+\frac{2 b^{3}}{a^{4}\left(\tanh \left(\frac{x}{2}\right)^{2} a-2 \tanh \left(\frac{x}{2}\right) b-a\right)}+\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{a \sqrt{a^{2}+b^{2}}} \\
& +\frac{10 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right) b^{2}}{a^{3} \sqrt{a^{2}+b^{2}}}+\frac{8 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right) b^{4}}{a^{5} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Problem 70: Unable to integrate problem.

$$
\int \frac{x^{2}}{a+b \sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 261 leaves, 11 steps):

$$
\begin{aligned}
& \frac{x^{2} \ln \left(1+\frac{b \mathrm{e}^{2 x}}{2 a-b-2 \sqrt{a} \sqrt{a-b}}\right)}{2 \sqrt{a} \sqrt{a-b}}-\frac{x^{2} \ln \left(1+\frac{b \mathrm{e}^{2 x}}{2 a-b+2 \sqrt{a} \sqrt{a-b}}\right)}{2 \sqrt{a} \sqrt{a-b}}+\frac{x \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{2 x}}{2 a-b-2 \sqrt{a} \sqrt{a-b}}\right)}{2 \sqrt{a} \sqrt{a-b}} \\
& \quad-\frac{x \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{2 x}}{2 a-b+2 \sqrt{a} \sqrt{a-b}}\right)}{2 \sqrt{a} \sqrt{a-b}}-\frac{\operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{2 x}}{2 a-b-2 \sqrt{a} \sqrt{a-b}}\right)}{4 \sqrt{a} \sqrt{a-b}}+\frac{\operatorname{polylog}\left(3,-\frac{\left.2-\frac{\mathrm{e}^{2 x}}{2 a-b+2 \sqrt{a} \sqrt{a-b}}\right)}{4 \sqrt{a} \sqrt{a-b}}\right.}{}
\end{aligned}
$$

Result(type 8, 16 leaves):

$$
\int \frac{x^{2}}{a+b \sinh (x)^{2}} \mathrm{~d} x
$$

Problem 71: Result is not expressed in closed-form.

$$
\int \frac{x}{a+b \sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 171 leaves, 9 steps):

$$
\begin{aligned}
& \frac{x \ln \left(1+\frac{b \mathrm{e}^{2 x}}{2 a-b-2 \sqrt{a} \sqrt{a-b}}\right)}{2 \sqrt{a} \sqrt{a-b}}-\frac{x \ln \left(1+\frac{b \mathrm{e}^{2 x}}{2 a-b+2 \sqrt{a} \sqrt{a-b}}\right)}{2 \sqrt{a} \sqrt{a-b}}+\frac{\operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{2 x}}{2 a-b-2 \sqrt{a} \sqrt{a-b}}\right)}{4 \sqrt{a} \sqrt{a-b}} \\
& \quad-\frac{\operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{2 x}}{2 a-b+2 \sqrt{a} \sqrt{a-b}}\right)}{4 \sqrt{a} \sqrt{a-b}} \\
& \text { Result (type 7, 62 leaves): }
\end{aligned}
$$

$$
\sum_{-R 1=\operatorname{RootOf}\left(b Z_{-} Z^{4}+(4 a-2 b) \_Z^{2}+b\right)} \frac{x \ln \left(\frac{R 1-\mathrm{e}^{x}}{R 1}\right)+\operatorname{dilog}\left(\frac{R 1-\mathrm{e}^{x}}{R 1}\right)}{\__{-} R 1^{2} b+2 a-b}
$$

Problem 73: Unable to integrate problem.

$$
\int \sinh \left(a+b \ln \left(c x^{n}\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 88 leaves, 2 steps):

$$
\frac{2 b^{2} n^{2} x}{-4 b^{2} n^{2}+1}-\frac{2 b n x \cosh \left(a+b \ln \left(c x^{n}\right)\right) \sinh \left(a+b \ln \left(c x^{n}\right)\right)}{-4 b^{2} n^{2}+1}+\frac{x \sinh \left(a+b \ln \left(c x^{n}\right)\right)^{2}}{-4 b^{2} n^{2}+1}
$$

Result(type 8, 15 leaves):

$$
\int \sinh \left(a+b \ln \left(c x^{n}\right)\right)^{2} \mathrm{~d} x
$$

Problem 79: Result more than twice size of optimal antiderivative.

$$
\int \sinh \left(\frac{b x+a}{d x+c}\right) \mathrm{d} x
$$

Optimal(type 4, 101 leaves, 5 steps):

$$
\frac{(-a d+c b) \operatorname{Chi}\left(\frac{-a d+c b}{d(d x+c)}\right) \cosh \left(\frac{b}{d}\right)}{d^{2}}-\frac{(-a d+c b) \operatorname{Shi}\left(\frac{-a d+c b}{d(d x+c)}\right) \sinh \left(\frac{b}{d}\right)}{d^{2}}+\frac{(d x+c) \sinh \left(\frac{b x+a}{d x+c}\right)}{d}
$$

Result(type 4, 346 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{e}^{-\frac{b x+a}{d x+c}} a}{2\left(\frac{d a}{d x+c}-\frac{c b}{d x+c}\right)}+\frac{\mathrm{e}^{-\frac{b x+a}{d x+c}} c b}{2 d\left(\frac{d a}{d x+c}-\frac{c b}{d x+c}\right)}+\frac{\mathrm{e}^{-\frac{b}{d}} \operatorname{Ei}_{1}\left(\frac{a d-c b}{d(d x+c)}\right) a}{2 d}-\frac{\mathrm{e}^{-\frac{b}{d}} \operatorname{Ei}_{1}\left(\frac{a d-c b}{d(d x+c)}\right) c b}{2 d^{2}}+\frac{d \mathrm{e}^{\frac{b x+a}{d x+c}} x a}{2(a d-c b)}-\frac{\mathrm{e}^{\frac{b x+a}{d x+c}} x c b}{2(a d-c b)} \\
& \quad+\frac{\mathrm{e}^{\frac{b x+a}{d x+c}} c a}{2(a d-c b)}-\frac{\mathrm{e}^{\frac{b x+a}{d x+c}} c^{2} b}{2 d(a d-c b)}+\frac{\mathrm{e}^{\frac{b}{d}} \operatorname{Ei}_{1}\left(-\frac{a d-c b}{d(d x+c)}\right) a}{2 d}-\frac{\mathrm{e}^{\frac{b}{d}} \operatorname{Ei}_{1}\left(-\frac{a d-c b}{d(d x+c)}\right) c b}{2 d^{2}}
\end{aligned}
$$

Problem 80: Result more than twice size of optimal antiderivative.

$$
\int \sinh \left(e+\frac{f(b x+a)}{d x+c}\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 131 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{(-a d+c b) f \cosh \left(2 e+\frac{2 b f}{d}\right) \operatorname{Shi}\left(\frac{2(-a d+c b) f}{d(d x+c)}\right)}{d^{2}}+\frac{(-a d+c b) f \operatorname{Chi}\left(\frac{2(-a d+c b) f}{d(d x+c)}\right) \sinh \left(2 e+\frac{2 b f}{d}\right)}{d^{2}} \\
& \quad+\frac{(d x+c) \sinh \left(\frac{b f x+d e x+a f+c e}{d x+c}\right)^{2}}{d}
\end{aligned}
$$

Result(type 4, 467 leaves):
$-\frac{x}{2}+\frac{f \mathrm{e}^{-\frac{2(b f x+d e x+a f+c e)}{d x+c}}}{4\left(\frac{d f a}{d x+c}-\frac{f c b}{d x+c}\right)}-\frac{f \mathrm{e}^{-\frac{2(b f x+d e x+a f+c e)}{d x+c}} c b}{4 d\left(\frac{d f a}{d x+c}-\frac{f c b}{d x+c}\right)}-\frac{f \mathrm{e}^{-\frac{2(b f+d e)}{d}} \operatorname{Ei}_{1}\left(\frac{2(a d-c b) f}{d(d x+c)}\right) a}{2 d}+\frac{f \mathrm{e}^{-\frac{2(b f+d e)}{d}} \operatorname{Ei}_{1}\left(\frac{2(a d-c b) f}{d(d x+c)}\right) c b}{2 d^{2}}$


Problem 83: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{x} \operatorname{csch}(2 x) \mathrm{d} x
$$

Optimal(type 3, 9 leaves, 5 steps):

$$
\arctan \left(\mathrm{e}^{x}\right)-\operatorname{arctanh}\left(\mathrm{e}^{x}\right)
$$

Result(type 3, 33 leaves):

$$
\frac{I \ln \left(\mathrm{e}^{x}+\mathrm{I}\right)}{2}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}-\mathrm{I}\right)}{2}-\frac{\ln \left(1+\mathrm{e}^{x}\right)}{2}+\frac{\ln \left(\mathrm{e}^{x}-1\right)}{2}
$$

Problem 85: Unable to integrate problem.

$$
\int F^{c(b x+a)} \operatorname{csch}(e x+d)^{3} \mathrm{~d} x
$$

Optimal(type 5, 114 leaves, 2 steps):
$-\frac{F^{c(b x+a)} \operatorname{coth}(e x+d) \operatorname{csch}(e x+d)}{2 e}-\frac{b c F^{c(b x+a)} \operatorname{csch}(e x+d) \ln (F)}{2 e^{2}}$


Result(type 8, 20 leaves):

$$
\int F^{c(b x+a)} \operatorname{csch}(e x+d)^{3} \mathrm{~d} x
$$

Test results for the 140 problems in "6.1.7 hyper^m (a+b sinh^n)^p.txt"
Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{6}}{a+b \sinh (d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 107 leaves, 6 steps):

$$
\frac{\left(8 a^{2}+4 a b+3 b^{2}\right) x}{8 b^{3}}-\frac{(4 a+3 b) \cosh (d x+c) \sinh (d x+c)}{8 b^{2} d}+\frac{\cosh (d x+c) \sinh (d x+c)^{3}}{4 b d}-\frac{a^{5 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{b^{3} d \sqrt{a-b}}
$$

$$
\begin{aligned}
& \text { Result(type 3, } 669 \text { leaves) } \\
& \frac{a^{3} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b^{3} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+\frac{a^{3} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b^{2} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}-\frac{a^{3} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b^{3} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& +\frac{a^{3} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b^{2} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}+\frac{1}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{4}}+\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}} \\
& -\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{1}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{3}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)} \\
& -\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) a^{2}}{d b^{3}}-\frac{a \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{2 d b^{2}}-\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{8 d b}-\frac{1}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{4}} \\
& +\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}}-\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}-\frac{3}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{1}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}} \\
& +\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) a^{2}}{d b^{3}}+\frac{a \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{2 d b^{2}}+\frac{3 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{8 d b}
\end{aligned}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{a+b \sinh (d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 32 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{d \sqrt{a} \sqrt{a-b}}
$$

Result(type 3, 266 leaves):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}-\frac{\arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right) b}{d \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+\frac{\operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a})}\right.}{d \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& \quad-\frac{\operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}
\end{aligned}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{4}}{a+b \sinh (d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 68 leaves, 4 steps):

$$
\frac{(a+b) \operatorname{coth}(d x+c)}{a^{2} d}-\frac{\operatorname{coth}(d x+c)^{3}}{3 a d}+\frac{b^{2} \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{a^{5 / 2} d \sqrt{a-b}}
$$

Result(type 3, 400 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{24 d a}+\frac{3 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{8 d a}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b}{2 d a^{2}}-\frac{b^{2} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d a^{2} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}} \\
& -\frac{b^{3} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d a^{2} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+\frac{b^{2} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d a^{2} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& -\frac{b^{3} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d a^{2} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}-\frac{1}{24 d \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a}+\frac{3}{8 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}+\frac{b}{2 d \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}
\end{aligned}
$$

[^3]$$
\int \frac{\operatorname{csch}(d x+c)^{6}}{a+b \sinh (d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 98 leaves, 4 steps):

$$
-\frac{\left(a^{2}+a b+b^{2}\right) \operatorname{coth}(d x+c)}{a^{3} d}+\frac{(2 a+b) \operatorname{coth}(d x+c)^{3}}{3 a^{2} d}-\frac{\operatorname{coth}(d x+c)^{5}}{5 a d}-\frac{b^{3} \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{a^{7 / 2} d \sqrt{a-b}}
$$

Result(type 3, 518 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}}{160 d a}+\frac{5 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{96 d a}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} b}{24 d a^{2}}-\frac{5 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{16 d a}-\frac{3 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b}{8 d a^{2}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}}{2 d a^{3}} \\
& +\frac{b^{3} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d a^{3} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+\frac{b^{4} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d a^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}} \\
& b^{3} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right) \\
& +\frac{b^{4} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d a^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}-\frac{1}{160 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5}} \\
& +\frac{5}{96 d \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a}+\frac{b}{24 d a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}-\frac{5}{16 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}-\frac{3 b}{8 d \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}-\frac{b^{2}}{2 d a^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}
\end{aligned}
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 69 leaves, 3 steps):

$$
\frac{\cosh (d x+c)}{2(a-b) d\left(a-b+b \cosh (d x+c)^{2}\right)}+\frac{\arctan \left(\frac{\cosh (d x+c) \sqrt{b}}{\sqrt{a-b}}\right)}{2(a-b)^{3 / 2} d \sqrt{b}}
$$

Result(type 3, 255 leaves):

$$
\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{\left.\left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b)}
$$

$$
\begin{aligned}
& +\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b) a} \\
& +\frac{1}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b)}+\frac{\arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right)}{2 d(a-b) \sqrt{a b-b^{2}}}
\end{aligned}
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} d x
$$

Optimal(type 3, 98 leaves, 5 steps):

$$
-\frac{\operatorname{arctanh}(\cosh (d x+c))}{a^{2} d}-\frac{b \cosh (d x+c)}{2 a(a-b) d\left(a-b+b \cosh (d x+c)^{2}\right)}-\frac{(3 a-2 b) \arctan \left(\frac{\cosh (d x+c) \sqrt{b}}{\sqrt{a-b}}\right) \sqrt{b}}{2 a^{2}(a-b)^{3 / 2} d}
$$

Result(type 3, 349 leaves):

$$
\begin{gathered}
\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b) a} \\
-\frac{2 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b)}
\end{gathered}
$$

$$
-\frac{b}{d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b)}-\frac{3 b \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right)}{2 d a(a-b) \sqrt{a b-b^{2}}}
$$

$$
+\frac{b^{2} \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right)}{d a^{2}(a-b) \sqrt{a b-b^{2}}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{2}}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{3}}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 145 leaves, 6 steps):

$$
\begin{aligned}
& \frac{(5 a-4 b) b^{3 / 2} \arctan \left(\frac{\cosh (d x+c) \sqrt{b}}{\sqrt{a-b}}\right)}{2 a^{3}(a-b)^{3 / 2} d}+\frac{(a+4 b) \operatorname{arctanh}(\cosh (d x+c))}{2 a^{3} d}-\frac{(a-2 b) b \cosh (d x+c)}{2 a^{2}(a-b) d\left(a-b+b \cosh (d x+c)^{2}\right)} \\
& \quad-\frac{\operatorname{coth}(d x+c) \operatorname{csch}(d x+c)}{2 a d\left(a-b+b \cosh (d x+c)^{2}\right)}
\end{aligned}
$$

Result(type 3, 414 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{8 d a^{2}}-\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b)} \\
& +\frac{2 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b)} \\
& +\frac{b^{2}}{d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)(a-b)}+\frac{5 b^{2} \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right.}{2 d a^{2}(a-b) \sqrt{a b-b^{2}}} \\
& -\frac{2 b^{3} \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right)}{d a^{3}(a-b) \sqrt{a b-b^{2}}}-\frac{1}{8 d a^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{2 d a^{2}}-\frac{2 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b}{d a^{3}}
\end{aligned}
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)}{\left(a+b \sinh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 152 leaves, 6 steps):
$-\frac{\operatorname{arctanh}(\cosh (d x+c))}{a^{3} d}-\frac{b \cosh (d x+c)}{4 a(a-b) d\left(a-b+b \cosh (d x+c)^{2}\right)^{2}}-\frac{(7 a-4 b) b \cosh (d x+c)}{8 a^{2}(a-b)^{2} d\left(a-b+b \cosh (d x+c)^{2}\right)}$


Result(type 3, 1144 leaves):

$$
\begin{aligned}
& 9 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6} \\
& \overline{4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& -\frac{7 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}}{d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& +\longrightarrow \quad 4 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6} \\
& d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right) \\
& 27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} \\
& 4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right) \\
& +\frac{45 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{2 d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& -\frac{30 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& +\frac{12 b^{4} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}}{d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& 27 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \\
& +\overline{4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{17 b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& +\frac{8 b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& -\frac{9 b}{4 d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& +\frac{3 b^{2}}{2 d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)^{2}\left(a^{2}-2 a b+b^{2}\right)} \\
& -\frac{15 b \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right)}{-}+5 b^{2} \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right) \\
& 8 d a\left(a^{2}-2 a b+b^{2}\right) \sqrt{a b-b^{2}}+2 d a^{2}\left(a^{2}-2 a b+b^{2}\right) \sqrt{a b-b^{2}} \\
& -\frac{b^{3} \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a-2 a+4 b}{4 \sqrt{a b-b^{2}}}\right)}{d a^{3}\left(a^{2}-2 a b+b^{2}\right) \sqrt{a b-b^{2}}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{3}}
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)^{4}}{\left(a+b \sinh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 241 leaves, 6 steps):
$\frac{b^{2}\left(48 a^{2}-80 a b+35 b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{8 a^{9 / 2}(a-b)^{5 / 2} d}+\frac{\left(8 a^{3}-4 a^{2} b-45 b^{2} a+35 b^{3}\right) \operatorname{coth}(d x+c)}{8 a^{4}(a-b)^{2} d}-\frac{\left(8 a^{2}-52 a b+35 b^{2}\right) \operatorname{coth}(d x+c)^{3}}{24 a^{3}(a-b)^{2} d}$
$-\frac{b \operatorname{csch}(d x+c)^{3} \operatorname{sech}(d x+c)^{3}}{4 a(a-b) d\left(a-(a-b) \tanh (d x+c)^{2}\right)^{2}}-\frac{(10 a-7 b) b \operatorname{csch}(d x+c)^{3} \operatorname{sech}(d x+c)}{8 a^{2}(a-b)^{2} d\left(a-(a-b) \tanh (d x+c)^{2}\right)}$
Result(type ?, 4745 leaves): Display of huge result suppressed!
Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(1-\sinh (x)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 29 leaves, 4 steps):

$$
\frac{\cosh (x) \sinh (x)}{4\left(1-\sinh (x)^{2}\right)}+\frac{3 \operatorname{arctanh}(\sqrt{2} \tanh (x)) \sqrt{2}}{8}
$$

Result(type 3, 91 leaves):

$$
-\frac{-\frac{\tanh \left(\frac{x}{2}\right)}{4}+\frac{1}{4}}{\tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right)-1}+\frac{3 \sqrt{2} \operatorname{arctanh}\left(\frac{\left.\left(2 \tanh \left(\frac{x}{2}\right)+2\right) \sqrt{2}\right)}{4}\right)}{8}-\frac{-\frac{\tanh \left(\frac{x}{2}\right)}{4}-\frac{1}{4}}{\tanh \left(\frac{x}{2}\right)^{2}-2 \tanh \left(\frac{x}{2}\right)-1}+\frac{3 \sqrt{2} \operatorname{arctanh}\left(\frac{\left(2 \tanh \left(\frac{x}{2}\right)-2\right) \sqrt{2}}{4}\right)}{8}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(1-\sinh (x)^{2}\right)^{3}} d x
$$

Optimal(type 3, 45 leaves, 5 steps):

$$
\frac{\cosh (x) \sinh (x)}{8\left(1-\sinh (x)^{2}\right)^{2}}+\frac{9 \cosh (x) \sinh (x)}{32\left(1-\sinh (x)^{2}\right)}+\frac{19 \operatorname{arctanh}(\sqrt{2} \tanh (x)) \sqrt{2}}{64}
$$

Result(type 3, 123 leaves):

$$
\left.-\frac{-\frac{13 \tanh \left(\frac{x}{2}\right)^{3}}{8}-\frac{11 \tanh \left(\frac{x}{2}\right)^{2}}{8}+\frac{31 \tanh \left(\frac{x}{2}\right)}{8}-\frac{11}{8}}{4\left(\tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{19 \sqrt{2} \operatorname{arctanh}\left(\frac{\left(2 \tanh \left(\frac{x}{2}\right)+2\right) \sqrt{2}}{4}\right)}{64}\right)
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \sinh (f x+e)^{3} \sqrt{a+b \sinh (f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 114 leaves, 5 steps):

```
\(-\frac{(a-b)(a+3 b) \operatorname{arctanh}\left(\frac{\cosh (f x+e) \sqrt{b}}{\sqrt{a-b+b \cosh (f x+e)^{2}}}\right)}{8 b^{3 / 2} f}+\frac{\cosh (f x+e)\left(a-b+b \cosh (f x+e)^{2}\right)^{3 / 2}}{4 b f}\)
\(-\frac{(a+3 b) \cosh (f x+e) \sqrt{a-b+b \cosh (f x+e)^{2}}}{8 b f}\)
```

Result(type 3, 338 leaves):
$\frac{1}{16 b^{5 / 2} \cosh (f x+e) \sqrt{a+b \sinh (f x+e)^{2}} f}\left(\sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\left(4 \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}} b^{5} / 2 \cosh (f x+e)^{2}\right.\right.$
$-10 \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}} b^{5} / 2+2 a \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}} b^{3} / 2$
$-\ln \left(\frac{2 b \cosh (f x+e)^{2}+2 \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}} \sqrt{b}+a-b}{2 \sqrt{b}}\right) a^{2} b$
$-2 a \ln \left(\frac{2 b \cosh (f x+e)^{2}+2 \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}} \sqrt{b}+a-b}{2 \sqrt{b}}\right) b^{2}$
$\left.\left.+3 b^{3} \ln \left(\frac{2 b \cosh (f x+e)^{2}+2 \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}} \sqrt{b}+a-b}{2 \sqrt{b}}\right)\right)\right)$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{csch}(f x+e)^{5} \sqrt{a+b \sinh (f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 128 leaves, 5 steps):

$$
-\frac{(a-b)(3 a+b) \operatorname{arctanh}\left(\frac{\cosh (f x+e) \sqrt{a}}{\sqrt{a-b+b \cosh (f x+e)^{2}}}\right)}{8 a^{3 / 2} f}-\frac{\left(a-b+b \cosh (f x+e)^{2}\right)^{3 / 2} \operatorname{coth}(f x+e) \operatorname{csch}(f x+e)^{3}}{4 a f}
$$

$$
+\frac{(3 a+b) \operatorname{coth}(f x+e) \operatorname{csch}(f x+e) \sqrt{a-b+b \cosh (f x+e)^{2}}}{8 a f}
$$

Result(type 3, 380 leaves):
$\frac{1}{16 \sinh (f x+e)^{4} a^{5} / 2 \cosh (f x+e) \sqrt{a+b \sinh (f x+e)^{2}} f}\left(\sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\left(6 \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x\right.\right.$

$$
+e)^{2} a^{5} / 2-3 a^{3} \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{4}
$$

$$
\begin{aligned}
& +2 b \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{4} a^{2} \\
& +\ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) b^{2} \sinh (f x+e)^{4} a
\end{aligned}
$$

$$
\left.\left.-2 b \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x+e)^{2} a^{3 / 2}-4 \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} a^{5} / 2\right)\right)
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{csch}(f x+e)^{5}\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 119 leaves, 5 steps):
$-\frac{\left(a-b+b \cosh (f x+e)^{2}\right)^{3 / 2} \operatorname{coth}(f x+e) \operatorname{csch}(f x+e)^{3}}{4 f}-\frac{3(a-b)^{2} \operatorname{arctanh}\left(\frac{\cosh (f x+e) \sqrt{a}}{\sqrt{a-b+b \cosh (f x+e)^{2}}}\right)}{8 f \sqrt{a}}$
$+\frac{3(a-b) \operatorname{coth}(f x+e) \operatorname{csch}(f x+e) \sqrt{a-b+b \cosh (f x+e)^{2}}}{8 f}$
Result(type 3, 378 leaves):
$\frac{1}{16 \sinh (f x+e)^{4} \sqrt{a} \cosh (f x+e) \sqrt{a+b \sinh (f x+e)^{2}} f}\left(\sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\right)$

$$
\begin{aligned}
& -3 \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{4} a^{2} \\
& +6 a b \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{4} \\
& -3 \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) b^{2} \sinh (f x+e)^{4}
\end{aligned}
$$

$$
+6 \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x+e)^{2} a^{3 / 2}-10 b \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x+e)^{2} \sqrt{a}
$$

$$
\left.\left.-4 a^{3 / 2} \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\right)\right)
$$

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{csch}(f x+e)^{7}\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 179 leaves, 6 steps):
$\frac{(a-b)^{2}(5 a+b) \operatorname{arctanh}\left(\frac{\cosh (f x+e) \sqrt{a}}{\sqrt{a-b+b \cosh (f x+e)^{2}}}\right)}{16 a^{3 / 2} f}+\frac{(5 a+b)\left(a-b+b \cosh (f x+e)^{2}\right)^{3 / 2} \operatorname{coth}(f x+e) \operatorname{csch}(f x+e)^{3}}{24 a f}$

$$
-\frac{\left(a-b+b \cosh (f x+e)^{2}\right)^{5 / 2} \operatorname{coth}(f x+e) \operatorname{csch}(f x+e)^{5}}{6 a f}-\frac{(a-b)(5 a+b) \operatorname{coth}(f x+e) \operatorname{csch}(f x+e) \sqrt{a-b+b \cosh (f x+e)^{2}}}{16 a f}
$$

Result(type 3, 568 leaves):
$-\frac{1}{96 \sinh (f x+e)^{6} a^{5} / 2 \cosh (f x+e) \sqrt{a+b \sinh (f x+e)^{2}} f}\left(\sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\left(30 a^{7 / 2} \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\right.\right.$

$$
\sinh (f x+e)^{4}-44 b \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x+e)^{4} a^{5 / 2}
$$

$$
\begin{aligned}
& -15 a^{4} \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{6} \\
& +27 a^{3} b \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{6}
\end{aligned}
$$

$$
-9 \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) b^{2} \sinh (f x+e)^{6} a^{2}
$$

$$
-3 \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) b^{3} \sinh (f x+e)^{6} a
$$

$$
-20 a^{7} / 2 \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x+e)^{2}+6 b^{2} \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x+e)^{4} a^{3} / 2
$$

$$
\left.\left.+28 b \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \sinh (f x+e)^{2} a^{5 / 2}+16 a^{7 / 2} \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\right)\right)
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a+b \sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 49 leaves, 2 steps):

$$
\frac{-\mathrm{I} \sqrt{\cosh (x)^{2}} \operatorname{EllipticE}\left(\mathrm{I} \sinh (x), \sqrt{\frac{b}{a}}\right) \sqrt{a+b \sinh (x)^{2}}}{\cosh (x) \sqrt{1+\frac{b \sinh (x)^{2}}{a}}}
$$

Result(type 4, 108 leaves):

$$
\frac{\sqrt{\frac{a+b \sinh (x)^{2}}{a}} \sqrt{\cosh (x)^{2}}\left(a \operatorname{EllipticF}\left(\sinh (x) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right)-b \operatorname{EllipticF}\left(\sinh (x) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right)+b \operatorname{EllipticE}\left(\sinh (x) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right)\right)}{\sqrt{-\frac{b}{a}} \cosh (x) \sqrt{a+b \sinh (x)^{2}}}
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(f x+e)}{\sqrt{a+b \sinh (f x+e)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 36 leaves, 3 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{\cosh (f x+e) \sqrt{a}}{\sqrt{a-b+b \cosh (f x+e)^{2}}}\right)}{f \sqrt{a}}
$$

Result(type 3, 112 leaves):

$$
-\frac{\sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}} \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right)}{2 \sqrt{a} \cosh (f x+e) \sqrt{a+b \sinh (f x+e)^{2}} f}
$$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(f x+e)^{3}}{\sqrt{a+b \sinh (f x+e)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 77 leaves, 4 steps):

$$
\frac{(a+b) \operatorname{arctanh}\left(\frac{\cosh (f x+e) \sqrt{a}}{\sqrt{a-b+b \cosh (f x+e)^{2}}}\right)}{2 a^{3 / 2} f}-\frac{\operatorname{coth}(f x+e) \operatorname{csch}(f x+e) \sqrt{a-b+b \cosh (f x+e)^{2}}}{2 a f}
$$

Result(type 3, 233 leaves):
$-\frac{1}{4 \sinh (f x+e)^{2} a^{5 / 2} \cosh (f x+e) \sqrt{a+b \sinh (f x+e)^{2}} f}\left(\sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\right)$

$$
\begin{aligned}
& -\ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{2} a^{2} \\
& -b \ln \left(\frac{(a+b) \cosh (f x+e)^{2}+2 \sqrt{a} \sqrt{b \cosh (f x+e)^{4}+(a-b) \cosh (f x+e)^{2}}+a-b}{\sinh (f x+e)^{2}}\right) \sinh (f x+e)^{2} a
\end{aligned}
$$

$\left.\left.+2 a^{3} / 2 \sqrt{\left(a+b \sinh (f x+e)^{2}\right) \cosh (f x+e)^{2}}\right)\right)$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (f x+e)^{6}}{\left(a+b \sinh (f x+e)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 400 leaves, 7 steps):
$-\frac{a \cosh (f x+e) \sinh (f x+e)^{3}}{3(a-b) b f\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}-\frac{2 a(2 a-3 b) \cosh (f x+e) \sinh (f x+e)}{3(a-b)^{2} b^{2} f \sqrt{a+b \sinh (f x+e)^{2}}}$

$$
-\frac{\left(8 a^{2}-13 a b+3 b^{2}\right) \sqrt{\frac{1}{1+\sinh (f x+e)^{2}}} \sqrt{1+\sinh (f x+e)^{2}} \operatorname{EllipticE}\left(\frac{\sinh (f x+e)}{\sqrt{1+\sinh (f x+e)^{2}}}, \sqrt{1-\frac{b}{a}}\right) \operatorname{sech}(f x+e) \sqrt{a+b \sinh (f x+e)^{2}}}{3(a-b)^{2} b^{3} f \sqrt{\frac{\operatorname{sech}(f x+e)^{2}\left(a+b \sinh (f x+e)^{2}\right)}{a}}}
$$

$$
+\frac{2(2 a-3 b) \sqrt{\frac{1}{1+\sinh (f x+e)^{2}}} \sqrt{1+\sinh (f x+e)^{2}} \operatorname{EllipticF}\left(\frac{\sinh (f x+e)}{\sqrt{1+\sinh (f x+e)^{2}}}, \sqrt{1-\frac{b}{a}}\right) \operatorname{sech}(f x+e) \sqrt{a+b \sinh (f x+e)^{2}}}{3(a-b)^{2} b^{2} f \sqrt{\frac{\operatorname{sech}(f x+e)^{2}\left(a+b \sinh (f x+e)^{2}\right)}{a}}}
$$

$$
+\frac{\left(8 a^{2}-13 a b+3 b^{2}\right) \sqrt{a+b \sinh (f x+e)^{2}} \tanh (f x+e)}{3(a-b)^{2} b^{3} f}
$$

Result(type 4, 867 leaves):

$$
\begin{aligned}
& -\frac{1}{3 \sqrt{-\frac{b}{a}}\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}(a-b)^{2} b^{2} \cosh (f x+e) f}\left(\left(5 \sqrt{-\frac{b}{a}} a^{2} b-7 \sqrt{-\frac{b}{a}} a b^{2}\right) \sinh (f x+e) \cosh (f x+e)^{4}+\left(4 \sqrt{-\frac{b}{a}} a^{3}\right.\right. \\
& \left.-11 \sqrt{-\frac{b}{a}} a^{2} b+7 \sqrt{-\frac{b}{a}} a b^{2}\right) \cosh (f x+e)^{2} \sinh (f x+e)+\sqrt{\cosh (f x+e)^{2}} \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} b\left(4 \operatorname { E l l i p t i c F } \left(\sinh (f x+e) \sqrt{-\frac{b}{a}}\right.\right. \\
& \left.\quad \sqrt{\frac{a}{b}}\right) \\
& \left.\quad+13 \text { EllipticE }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a b-3 \operatorname{EllipticF}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a b+3 \operatorname{EllipticF}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b^{2}-8 \operatorname{EllipticE}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b^{2}\right) \cosh (f x+e)^{2} \\
& \left.\quad+4 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\frac{a}{a}} \sqrt{\cosh (f x+e)^{2}}\right) \operatorname{EllipticF}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a^{3}
\end{aligned}
$$

$$
\begin{aligned}
& -11 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \text { EllipticF }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a^{2} b \\
& +10 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \text { EllipticF }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a b^{2} \\
& -3 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \text { EllipticF }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b^{3} \\
& -8 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \text { EllipticE }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a^{3} \\
& +21 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \text { EllipticE }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a^{2} b \\
& -16 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \text { EllipticE }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a b^{2} \\
& \left.+3 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \text { EllipticE }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b^{3}\right)
\end{aligned}
$$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (f x+e)^{2}}{\left(a+b \sinh (f x+e)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 277 leaves, 7 steps):
$\frac{\cosh (f x+e) \sinh (f x+e)}{3(a-b) f\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}+\frac{(a+b) \cosh (f x+e) \sinh (f x+e)}{3 a(a-b)^{2} f \sqrt{a+b \sinh (f x+e)^{2}}}$

$$
+\frac{\mathrm{I}(a+b) \sqrt{\cos (\mathrm{I} e+\mathrm{I} f x)^{2}} \text { EllipticE }\left(\sin (\mathrm{I} e+\mathrm{I} f x), \sqrt{\frac{b}{a}}\right) \sqrt{a+b \sinh (f x+e)^{2}}}{3 \cos (\mathrm{I} e+\mathrm{I} f x) a(a-b)^{2} b f \sqrt{1+\frac{b \sinh (f x+e)^{2}}{a}}}
$$

$$
-\frac{\mathrm{I} \sqrt{\cos (\mathrm{I} e+\mathrm{I} f x)^{2}} \text { EllipticF }\left(\sin (\mathrm{I} e+\mathrm{I} f x), \sqrt{\frac{b}{a}}\right) \sqrt{1+\frac{b \sinh (f x+e)^{2}}{a}}}{}
$$

$$
3 \cos (\mathrm{I} e+\mathrm{I} f x)(a-b) b f \sqrt{a+b \sinh (f x+e)^{2}}
$$

Result(type 4, 597 leaves):
$-\frac{1}{3 \sqrt{-\frac{b}{a}}\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2} a(a-b)^{2} \cosh (f x+e) f}\left(\left(-\sqrt{-\frac{b}{a}} a b-\sqrt{-\frac{b}{a}} b^{2}\right) \sinh (f x+e) \cosh (f x+e)^{4}+\left(-2 \sqrt{-\frac{b}{a}} a a^{2}+\sqrt{-\frac{b}{a}} a b\right.\right.$

$$
\begin{aligned}
& \left.+\sqrt{-\frac{b}{a}} b^{2}\right) \cosh (f x+e)^{2} \sinh (f x+e)+\sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} b\left(a \operatorname{EllipticF}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right)\right. \\
& \text { - EllipticF } \left.\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b+\text { EllipticE }\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a+\operatorname{EllipticE}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b\right) \cosh (f x+e)^{2} \\
& +\sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \operatorname{EllipticF}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a^{2} \\
& -2 \sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \operatorname{EllipticF}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a b \\
& +\sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \operatorname{EllipticF}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b^{2} \\
& +\sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \operatorname{EllipticE}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) a^{2} \\
& \left.-\sqrt{\frac{b \cosh (f x+e)^{2}}{a}+\frac{a-b}{a}} \sqrt{\cosh (f x+e)^{2}} \operatorname{EllipticE}\left(\sinh (f x+e) \sqrt{-\frac{b}{a}}, \sqrt{\frac{a}{b}}\right) b^{2}\right)
\end{aligned}
$$

Problem 39: Unable to integrate problem.

$$
\int \sinh (f x+e)^{5}\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 224 leaves, 5 steps):
$-\frac{(3 a+2 b(2+p)) \cosh (f x+e)\left(a-b+b \cosh (f x+e)^{2}\right)^{1+p}}{b^{2} f(3+2 p)(5+2 p)}$
$+\frac{\left(3 a^{2}+4 a b(1+p)+4 b^{2}\left(p^{2}+3 p+2\right)\right) \cosh (f x+e)\left(a-b+b \cosh (f x+e)^{2}\right)^{p} \text { hypergeom }\left(\left[\frac{1}{2},-p\right],\left[\frac{3}{2}\right],-\frac{b \cosh (f x+e)^{2}}{a-b}\right)}{b^{2} f(3+2 p)(5+2 p)\left(1+\frac{b \cosh (f x+e)^{2}}{a-b}\right)^{p}}$
$+\frac{\cosh (f x+e)\left(a-b+b \cosh (f x+e)^{2}\right)^{1+p} \sinh (f x+e)^{2}}{b f(5+2 p)}$
Result(type 8, 25 leaves):

$$
\int \sinh (f x+e)^{5}\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \sinh (f x+e)\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 76 leaves, 3 steps):

$$
\frac{\cosh (f x+e)\left(a-b+b \cosh (f x+e)^{2}\right)^{p} \text { hypergeom }\left(\left[\frac{1}{2},-p\right],\left[\frac{3}{2}\right],-\frac{b \cosh (f x+e)^{2}}{a-b}\right)}{f\left(1+\frac{b \cosh (f x+e)^{2}}{a-b}\right)^{p}}
$$

Result(type 8, 23 leaves):

$$
\int \sinh (f x+e)\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Problem 64: Result is not expressed in closed-form.

$$
\int \frac{1}{a-b \sinh (d x+c)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 79 leaves, 4 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)}{2 a^{3 / 4} d \sqrt{\sqrt{a}-\sqrt{b}}}+\frac{\operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)}{2 a^{3 / 4} d \sqrt{\sqrt{a}+\sqrt{b}}}
$$

Result(type 7, 101 leaves):

$$
\frac{\left.\sum_{R=\operatorname{RootOf}\left(a \not a Z^{8}-4 a\right.} \not Z^{6}+(6 a-16 b) \not Z^{4}-4 a \quad Z^{2}+a\right)}{} \frac{\overbrace{-} R^{6}+3 R^{4}-R_{-} R^{2}+1) \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-{ }_{-} R\right)}{4 d}
$$

Problem 65: Result is not expressed in closed-form.

$$
\int \frac{\operatorname{csch}(d x+c)^{2}}{a-b \sinh (d x+c)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 99 leaves, 6 steps):

$$
-\frac{\operatorname{coth}(d x+c)}{a d}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right) \sqrt{b}}{2 a^{5 / 4} d \sqrt{\sqrt{a}-\sqrt{b}}}+\frac{\operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right) \sqrt{b}}{2 a^{5 / 4} d \sqrt{\sqrt{a}+\sqrt{b}}}
$$

Result(type 7, 134 leaves):

$$
-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{2 d a}-\frac{\left.b\left(\sum_{R=\operatorname{RootOf}(a \not a-4 a} Z^{8}-Z^{6}+(6 a-16 b) \quad Z^{4}-4 a-Z^{2}+a\right)-R^{7} a-3 \_R^{5} a+3 \_R^{3} a-8 \_R^{3} b-\_R a\right)}{d a}-\frac{\left(R^{4}-R^{2}\right) \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-\__{-} R\right)}{2 d a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{7}}{\left(a-b \sinh (d x+c)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 164 leaves, 5 steps):
$-\frac{a \cosh (d x+c)\left(2-\cosh (d x+c)^{2}\right)}{4(a-b) b d\left(a-b+2 b \cosh (d x+c)^{2}-b \cosh (d x+c)^{4}\right)}+\frac{\arctan \left(\frac{b^{1 / 4} \cosh (d x+c)}{\sqrt{\sqrt{a}-\sqrt{b}})(3 \sqrt{a}-4 \sqrt{b})}\right.}{8 b^{7 / 4} d(\sqrt{a}-\sqrt{b})^{3 / 2}}$

$$
-\frac{\operatorname{arctanh}\left(\frac{b^{1 / 4} \cosh (d x+c)}{\sqrt{\sqrt{a}+\sqrt{b}}}\right)(3 \sqrt{a}+4 \sqrt{b})}{8 b^{7 / 4} d(\sqrt{a}+\sqrt{b})^{3 / 2}}
$$

Result (type 3, 1199 leaves):

$$
\begin{aligned}
& \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \sqrt{a b} \\
& 4 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-\frac{4 \sqrt{a b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{a}-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)(a-b) \\
& \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} \sqrt{a b} \\
& 2 d a b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-\frac{4 \sqrt{a b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{a}-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)(a-b) \\
& -\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-\frac{4 \sqrt{a b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{a}-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)(a-b)} \\
& -\frac{1}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-\frac{4 \sqrt{a b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{a}-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)(a-b)} \\
& +\frac{\sqrt{a b}}{4 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-\frac{4 \sqrt{a b} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}}{a}-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)(a-b)}
\end{aligned}
$$



$$
-\frac{a \arctan \left(\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 \sqrt{a b}-2 a}{4 \sqrt{-a b+\sqrt{a b} a}}\right)}{8 d b(a-b) \sqrt{-a b+\sqrt{a b} a}}
$$

Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{5}}{\left(a-b \sinh (d x+c)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 167 leaves, 5 steps):


Result(type ?, 3169 leaves): Display of huge result suppressed!
Problem 68: Result is not expressed in closed-form.

$$
\int \frac{\sinh (d x+c)^{8}}{\left(a-b \sinh (d x+c)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 240 leaves, 14 steps):
$\frac{x}{b^{2}}+\frac{a^{1 / 4} \operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)}{8 b^{3 / 2} d(\sqrt{a}-\sqrt{b})^{3 / 2}}-\frac{a^{1 / 4} \operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)}{8 b^{3 / 2} d(\sqrt{a}+\sqrt{b})^{3 / 2}}-\frac{a^{1 / 4} \operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)}{2 b^{2} d \sqrt{\sqrt{a}-\sqrt{b}}}$
$-\frac{a^{1 / 4} \operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)}{2 b^{2} d \sqrt{\sqrt{a}+\sqrt{b}}}-\frac{\tanh (d x+c)}{4(a-b) b d}+\frac{\tanh (d x+c)^{5}}{4 b d\left(a-2 a \tanh (d x+c)^{2}+(a-b) \tanh (d x+c)^{4}\right)}$
Result(type 7, 573 leaves):

$$
-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d b^{2}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d b^{2}}
$$

$$
\begin{aligned}
& a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7} \\
& 2 d b\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b) \\
& 5 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} \\
& +\frac{2 d b\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b)}{2} \\
& 5 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& +\overline{2 d b\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b)} \\
& a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& 2 d b\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b) \\
& +\frac{1}{16 d b^{2}}(a)
\end{aligned}
$$

Problem 69: Result is not expressed in closed-form.

$$
\int \frac{\sinh (d x+c)^{2}}{\left(a-b \sinh (d x+c)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 170 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{\operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)(2 \sqrt{a}-\sqrt{b})}{8 a^{5 / 4} d(\sqrt{a}-\sqrt{b})^{3 / 2} \sqrt{b}}+\frac{\operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right)(2 \sqrt{a}+\sqrt{b})}{8 a^{5 / 4} d \sqrt{b}(\sqrt{a}+\sqrt{b})^{3 / 2}} \\
& \quad+\frac{\tanh (d x+c)\left(a-(a+b) \tanh (d x+c)^{2}\right)}{4 a(a-b) d\left(a-2 a \tanh (d x+c)^{2}+(a-b) \tanh (d x+c)^{4}\right)}
\end{aligned}
$$

Result(type 7, 707 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7}}{2 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b)} \\
& \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} \\
& 2 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b) \\
& 2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} b \\
& \overline{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right) a(a-b)} \\
& \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& 2 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b) \\
& 2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} b \\
& \overline{d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right) a(a-b)} \\
& \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& 2 d\left(a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{8}-4 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{6}+6 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-16 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4}-4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+a\right)(a-b) \\
& \left(-a_{-} R^{6}+(11 a-4 b) R_{-}^{4}+(-11 a+4 b) \__{-} R^{2}+a\right) \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-{ }_{-} R\right)
\end{aligned}
$$

Problem 70: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(d x+c)}{\left(a-b \sinh (d x+c)^{4}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 487 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{\operatorname{arctanh}(\cosh (d x+c))}{a^{3} d}-\frac{b \cosh (d x+c)\left(2-\cosh (d x+c)^{2}\right)}{8 a(a-b) d\left(a-b+2 b \cosh (d x+c)^{2}-b \cosh (d x+c)^{4}\right)^{2}} \\
& \quad-\frac{b \cosh (d x+c)\left(2-\cosh (d x+c)^{2}\right)}{4 a^{2}(a-b) d\left(a-b+2 b \cosh (d x+c)^{2}-b \cosh (d x+c)^{4}\right)}-\frac{b \cosh (d x+c)\left(11 a+b-(5 a+b) \cosh (d x+c)^{2}\right)}{32 a^{2}(a-b)^{2} d\left(a-b+2 b \cosh (d x+c)^{2}-b \cosh (d x+c)^{4}\right)}
\end{aligned}
$$



Result(type ?, 8619 leaves): Display of huge result suppressed!
Problem 71: Result is not expressed in closed-form.

$$
\int \frac{\sinh (d x+c)^{8}}{\left(a-b \sinh (d x+c)^{4}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 263 leaves, 9 steps):


$$
-\frac{\tanh (d x+c)^{3}}{32 a(a-b) b d}+\frac{\tanh (d x+c)^{9}}{8 a d\left(a-2 a \tanh (d x+c)^{2}+(a-b) \tanh (d x+c)^{4}\right)^{2}}-\frac{\operatorname{sech}(d x+c)^{2} \tanh (d x+c)^{5}}{32 a b d\left(a-2 a \tanh (d x+c)^{2}+(a-b) \tanh (d x+c)^{4}\right)}
$$

Result (type ?, 2235 leaves): Display of huge result suppressed!
Problem 72: Result is not expressed in closed-form.

$$
\int \frac{\operatorname{csch}(d x+c)^{2}}{\left(a-b \sinh (d x+c)^{4}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 307 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{\operatorname{coth}(d x+c)}{a^{3} d}-\frac{3 \operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right) \sqrt{b}(20 a+15 b-34 \sqrt{a} \sqrt{b})}{64 a^{13 / 4} d(\sqrt{a}-\sqrt{b})^{5 / 2}} \\
& +\frac{3 \operatorname{arctanh}\left(\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tanh (d x+c)}{a^{1 / 4}}\right) \sqrt{b}(20 a+15 b+34 \sqrt{a} \sqrt{b})}{64 a^{13 / 4} d(\sqrt{a}+\sqrt{b})^{5 / 2}}+\frac{b^{2} \tanh (d x+c)\left(a(a+3 b)-\left(a^{2}+6 a b+b^{2}\right) \tanh (d x+c)^{2}\right)}{8 a^{2}(a-b)^{3} d\left(a-2 a \tanh (d x+c)^{2}+(a-b) \tanh (d x+c)^{4}\right)^{2}} \\
& \quad+\frac{b \tanh (d x+c)\left(\frac{2 a^{2}(9 a-17 b)}{(a-b)^{3}}-\frac{\left(18 a^{2}+15 a b-13 b^{2}\right) \tanh (d x+c)^{2}}{(a-b)^{2}}\right)}{32 a^{3} d\left(a-2 a \tanh (d x+c)^{2}+(a-b) \tanh (d x+c)^{4}\right)} \\
& \text { Result (type ?, } 2746 \text { leaves): Display of huge result suppressed! }
\end{aligned}
$$

Problem 73: Result is not expressed in closed-form.

$$
\int \frac{1}{a+b \sinh (x)^{5}} \mathrm{~d} x
$$

Optimal(type 3, 280 leaves, 17 steps):

$$
\begin{aligned}
& 2(-1)^{9 / 10} \operatorname{arctanh}\left(\frac{\mathrm{I} b^{1 / 5}-(-1)^{9 / 10} a^{1 / 5} \tanh \left(\frac{x}{2}\right)}{\sqrt{-(-1)^{4 / 5} a^{2 / 5}-b^{2 / 5}}}\right)-2 \operatorname{arctanh}\left(\frac{b^{1 / 5}-a^{1 / 5} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2 / 5}+b^{2} / 5}}\right) \\
& +\frac{2(-1)^{1 / 5} \operatorname{arctanh}\left(\frac{b^{1 / 5}+(-1)^{1 / 5} a^{1 / 5} \tanh \left(\frac{x}{2}\right)}{\sqrt{(-1)^{2 / 5} a^{2 / 5}+b^{2 / 5}}}\right)}{5 a^{4 / 5} \sqrt{(-1)^{2 / 5} a^{2 / 5}+b^{2 / 5}}}+\frac{2(-1)^{9 / 10} \operatorname{arctanh}\left(\frac{(-1)^{9 / 10}\left((-1)^{1 / 5} b^{1 / 5}+a^{1 / 5} \tanh \left(\frac{x}{2}\right)\right)}{\sqrt{-(-1)^{4 / 5} a^{2 / 5}+(-1)^{1 / 5} b^{2 / 5}}}\right)}{5 a^{4 / 5 \sqrt{-(-1)^{4 / 5} a^{2 / 5}+(-1)^{1 / 5} b^{2 / 5}}}} \\
& +\frac{2(-1)^{9 / 10} \operatorname{arctanh}\left(\frac{(-1)^{3 / 10}\left(b^{1 / 5}+(-1)^{3 / 5} a^{1 / 5} \tanh \left(\frac{x}{2}\right)\right)}{\sqrt{-(-1)^{4 / 5} a^{2 / 5}+(-1)^{3 / 5} b^{2 / 5}}}\right)}{5 a^{4 / 5} \sqrt{-(-1)^{4 / 5} a^{2 / 5}+(-1)^{3 / 5} b^{2 / 5}}}
\end{aligned}
$$

Result(type 7, 112 leaves):

Problem 75: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)}{a+a \sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 18 leaves, 3 steps):

$$
\frac{\arctan (\sinh (x))}{2 a}+\frac{\operatorname{sech}(x) \tanh (x)}{2 a}
$$

Result(type 3, 49 leaves):

$$
-\frac{\tanh \left(\frac{x}{2}\right)^{3}}{a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{\tanh \left(\frac{x}{2}\right)}{a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{\arctan \left(\tanh \left(\frac{x}{2}\right)\right)}{a}
$$

Problem 76: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{3}}{a+a \sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 29 leaves, 4 steps):

$$
\frac{3 \arctan (\sinh (x))}{8 a}+\frac{3 \operatorname{sech}(x) \tanh (x)}{8 a}+\frac{\operatorname{sech}(x)^{3} \tanh (x)}{4 a}
$$

Result(type 3, 93 leaves):

$$
-\frac{5 \tanh \left(\frac{x}{2}\right)^{7}}{4 a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{3 \tanh \left(\frac{x}{2}\right)^{5}}{4 a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{3 \tanh \left(\frac{x}{2}\right)^{3}}{4 a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{5 \tanh \left(\frac{x}{2}\right)}{4 a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{3 \arctan \left(\tanh \left(\frac{x}{2}\right)\right)}{4 a}
$$

Problem 78: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(d x+c)^{3}\left(a+b \sinh (d x+c)^{2}\right) \mathrm{d} x
$$

Optimal(type 3, 38 leaves, 3 steps):

$$
\frac{(a+b) \arctan (\sinh (d x+c))}{2 d}+\frac{(a-b) \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}
$$

Result(type 3, 81 leaves):

$$
\frac{a \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}+\frac{a \arctan \left(\mathrm{e}^{d x+c}\right)}{d}-\frac{b \sinh (d x+c)}{d \cosh (d x+c)^{2}}+\frac{b \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}+\frac{b \arctan \left(\mathrm{e}^{d x+c}\right)}{d}
$$

Problem 80: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(d x+c)^{3}\left(a+b \sinh (d x+c)^{2}\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 60 leaves, 5 steps):

$$
\frac{(a-b)(a+3 b) \arctan (\sinh (d x+c))}{2 d}+\frac{b^{2} \sinh (d x+c)}{d}+\frac{(a-b)^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}
$$

Result(type 3, 168 leaves):
$\frac{a^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}+\frac{a^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{d}-\frac{2 a b \sinh (d x+c)}{d \cosh (d x+c)^{2}}+\frac{a b \operatorname{sech}(d x+c) \tanh (d x+c)}{d}+\frac{2 a b \arctan \left(\mathrm{e}^{d x+c}\right)}{d}+\frac{b^{2} \sinh (d x+c)^{3}}{d \cosh (d x+c)^{2}}$

$$
+\frac{3 b^{2} \sinh (d x+c)}{d \cosh (d x+c)^{2}}-\frac{3 b^{2} \operatorname{sech}(d x+c) \tanh (d x+c)}{2 d}-\frac{3 b^{2} \arctan \left(\mathrm{e}^{d x+c}\right)}{d}
$$

Problem 81: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(d x+c)^{6}\left(a+b \sinh (d x+c)^{2}\right)^{2} d x
$$

Optimal(type 3, 53 leaves, 3 steps):

$$
\frac{a^{2} \tanh (d x+c)}{d}-\frac{2 a(a-b) \tanh (d x+c)^{3}}{3 d}+\frac{(a-b)^{2} \tanh (d x+c)^{5}}{5 d}
$$

Result(type 3, 157 leaves):

$$
\begin{aligned}
& \frac{1}{d}\left(a^{2}\left(\frac{8}{15}+\frac{\operatorname{sech}(d x+c)^{4}}{5}+\frac{4 \operatorname{sech}(d x+c)^{2}}{15}\right) \tanh (d x+c)+2 a b\left(-\frac{\sinh (d x+c)}{4 \cosh (d x+c)^{5}}\right.\right. \\
& \left.\quad+\frac{\left(\frac{8}{15}+\frac{\operatorname{sech}(d x+c)^{4}}{5}+\frac{4 \operatorname{sech}(d x+c)^{2}}{15}\right) \tanh (d x+c)}{4}\right)+b^{2}\left(-\frac{\sinh (d x+c)^{3}}{2 \cosh (d x+c)^{5}}-\frac{3 \sinh (d x+c)}{8 \cosh (d x+c)^{5}}\right. \\
& \left.\left.\quad+\frac{3\left(\frac{8}{15}+\frac{\operatorname{sech}(d x+c)^{4}}{5}+\frac{4 \operatorname{sech}(d x+c)^{2}}{15}\right) \tanh (d x+c)}{8}\right)\right)
\end{aligned}
$$

Problem 83: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(d x+c)^{5}\left(a+b \sinh (d x+c)^{2}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 97 leaves, 6 steps):
$\frac{3(a-b)\left(4 b^{2}+(a+b)^{2}\right) \arctan (\sinh (d x+c))}{8 d}+\frac{b^{3} \sinh (d x+c)}{d}+\frac{3(a-b)^{2}(a+3 b) \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}$

$$
+\frac{(a-b)^{3} \operatorname{sech}(d x+c)^{3} \tanh (d x+c)}{4 d}
$$

Result(type 3, 375 leaves):
$\frac{a^{3} \tanh (d x+c) \operatorname{sech}(d x+c)^{3}}{4 d}+\frac{3 a^{3} \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}+\frac{3 a^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{4 d}-\frac{a^{2} b \sinh (d x+c)}{d \cosh (d x+c)^{4}}+\frac{a^{2} b \tanh (d x+c) \operatorname{sech}(d x+c)^{3}}{4 d}$

$$
\begin{aligned}
& +\frac{3 a^{2} b \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}+\frac{3 a^{2} b \arctan \left(\mathrm{e}^{d x+c}\right)}{4 d}-\frac{3 b^{2} a \sinh (d x+c)^{3}}{d \cosh (d x+c)^{4}}-\frac{3 b^{2} a \sinh (d x+c)}{d \cosh (d x+c)^{4}}+\frac{3 b^{2} a \tanh (d x+c) \operatorname{sech}(d x+c)^{3}}{4 d} \\
& +\frac{9 b^{2} a \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}+\frac{9 b^{2} a \arctan \left(\mathrm{e}^{d x+c}\right)}{4 d}+\frac{b^{3} \sinh (d x+c)^{5}}{d \cosh (d x+c)^{4}}+\frac{5 b^{3} \sinh (d x+c)^{3}}{d \cosh (d x+c)^{4}}+\frac{5 b^{3} \sinh (d x+c)}{d \cosh (d x+c)^{4}} \\
& -\frac{5 b^{3} \tanh (d x+c) \operatorname{sech}(d x+c)^{3}}{4 d}-\frac{15 b^{3} \operatorname{sech}(d x+c) \tanh (d x+c)}{8 d}-\frac{15 b^{3} \arctan \left(\mathrm{e}^{d x+c}\right)}{4 d}
\end{aligned}
$$

Problem 84: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{7}}{a+b \sinh (d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 96 leaves, 4 steps):

$$
\frac{\left(a^{2}-3 a b+3 b^{2}\right) \sinh (d x+c)}{b^{3} d}-\frac{(a-3 b) \sinh (d x+c)^{3}}{3 b^{2} d}+\frac{\sinh (d x+c)^{5}}{5 b d}-\frac{(a-b)^{3} \arctan \left(\frac{\sinh (d x+c) \sqrt{b}}{\sqrt{a}}\right)}{b^{7 / 2} d \sqrt{a}}
$$

Result (type 3, 1655 leaves):

$$
-\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{4}}-\frac{5}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}}+\frac{1}{2 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{4}}-\frac{5}{4 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}}
$$

$$
+\frac{a^{4} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+\frac{6 a^{2} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}
$$

$$
+\frac{a^{4} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}+\frac{6 a^{2} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}
$$

$$
+\frac{\arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right) b}{d \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+
$$



$$
\begin{aligned}
& \frac{3 a^{2} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b^{2} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}-\frac{3 a \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}-\frac{3 a^{2} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b^{2} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& +\frac{3 a \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}-\frac{4 a \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& -\frac{4 a \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}-\frac{11}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}+\frac{11}{8 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a^{3} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b^{3} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+\frac{a^{3} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b^{3} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}-\frac{1}{5 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{5}} \\
& -\frac{1}{5 d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{5}}-\frac{3}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{3}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{3 a}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)} \\
& +\frac{3 a}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{\arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}-\frac{\operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& -\frac{4 a^{3} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{d b^{2} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}-\frac{4 a^{3} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d b^{2} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}+\frac{a}{3 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}} \\
& +\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{a^{2}}{d b^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}+\frac{a}{3 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}}-\frac{a}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}} \\
& -\frac{a^{2}}{d b^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}
\end{aligned}
$$

Problem 85: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{5}}{a+b \sinh (d x+c)^{2}} d x
$$

Optimal(type 3, 124 leaves, 6 steps):
$\frac{\left(3 a^{2}-10 a b+15 b^{2}\right) \arctan (\sinh (d x+c))}{8(a-b)^{3} d}-\frac{b^{5 / 2} \arctan \left(\frac{\sinh (d x+c) \sqrt{b}}{\sqrt{a}}\right)}{(a-b)^{3} d \sqrt{a}}+\frac{(3 a-7 b) \operatorname{sech}(d x+c) \tanh (d x+c)}{8(a-b)^{2} d}$

$$
+\frac{\operatorname{sech}(d x+c)^{3} \tanh (d x+c)}{4(a-b) d}
$$

Result(type 3, 1022 leaves):

$$
\begin{aligned}
& \frac{b^{3} a \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{\left.-\frac{b^{3} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right)}{} \text { (a)a}\right)} \\
& d(a-b)^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a} \quad d(a-b)^{3} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a} \\
& -\frac{b^{4} \arctan \left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}\right) .}{} \\
& +-\quad b^{3} a \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right) \\
& \overline{d(a-b)^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}-a+2 b) a}}+\overline{d(a-b)^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& +\frac{b^{3} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d(a-b)^{3} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}-\frac{b^{4} \operatorname{arctanh}\left(\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}}\right)}{d(a-b)^{3} \sqrt{-(a-b) b} \sqrt{(2 \sqrt{-(a-b) b}+a-2 b) a}} \\
& -\frac{5 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7} a^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}+\frac{7 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7} a b}{2 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}-\frac{9 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{7} b^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{3 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} a^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} a b}{2 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{5} b^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}} \\
& -\frac{3 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} a b}{2 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} b^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{5 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}-\frac{7 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a b}{2 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}}+\frac{9 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}}{4 d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{3 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a^{2}}{4 d(a-b)^{3}}-\frac{5 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) a b}{2 d(a-b)^{3}}+\frac{15 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right) b^{2}}{4 d(a-b)^{3}}
\end{aligned}
$$

Problem 86: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{5}}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 5 steps):

$$
-\frac{\left(3 a^{2}-2 a b-b^{2}\right) \arctan \left(\frac{\sinh (d x+c) \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} b^{5 / 2} d}+\frac{\sinh (d x+c)}{b^{2} d}+\frac{(a-b)^{2} \sinh (d x+c)}{2 a b^{2} d\left(a+b \sinh (d x+c)^{2}\right)}
$$

Result(type 3, 1538 leaves):

$$
\begin{array}{r}
-\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
+\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
-\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a} \\
+\frac{a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
-\frac{2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}
\end{array}
$$

$$
+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}+\frac{3 a^{3} \arctan \left(\frac{2}{\left.\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}\right)}\right.}{2 d b^{2} \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}
$$

$$
-\frac{5 a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d b \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}+\frac{a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}
$$



Problem 87: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{3}}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 65 leaves, 3 steps):

$$
\frac{(a+b) \arctan \left(\frac{\sinh (d x+c) \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2} b^{3 / 2} d}-\frac{(a-b) \sinh (d x+c)}{2 a b d\left(a+b \sinh (d x+c)^{2}\right)}
$$

Result(type 3, 1013 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& -\frac{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}{} \\
& \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& -\overline{d b\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& \begin{array}{l}
\left.+\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tan \right.}\right) \\
\quad \operatorname{arctanh}\left(\frac{a b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{\left(a^{2} b-2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}}\right)
\end{array} \\
& \left.\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a \quad-\frac{a b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{2 d \sqrt{-a^{2} b^{3}(a-b)} \sqrt{\left(a^{2} b-2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}} \\
& 2 d \sqrt{\left(a^{2} b-2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b} \\
& 2 d \sqrt{-a^{2} b^{3}(a-b)} \sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b} \\
& +\frac{\arctan \left(\frac{a b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}}\right)}{\left(\frac{1}{}\right)} \\
& +\frac{\left(\sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}\right.}{2 d \sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}} \\
& +\frac{b^{3} \operatorname{arctanh}\left(\frac{a b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{\left(a^{2} b-2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}}\right)}{2 d \sqrt{-a^{2} b^{3}(a-b)} \sqrt{\left(a^{2} b-2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}} \\
& --\quad b \operatorname{arctanh}\left(\frac{a b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{\left(a^{2} b-2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}}\right) \\
& +\frac{\left.b^{3} \arctan \left(\frac{a b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}}\right) .\right]\left(a^{2}\right)}{} \\
& 2 d \sqrt{-a^{2} b^{3}(a-b)} \sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b} \\
& +\frac{b \arctan \left(\frac{a b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}}\right)}{2 d a \sqrt{\left(-a^{2} b+2 b^{2} a+2 \sqrt{-a^{2} b^{3}(a-b)}\right) b}}
\end{aligned}
$$

Problem 88: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{2}}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} d x
$$

Optimal(type 3, 67 leaves, 3 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{2 a^{3 / 2} d \sqrt{a-b}}+\frac{\tanh (d x+c)}{2 a d\left(a-(a-b) \tanh (d x+c)^{2}\right)}
$$

Result(type 3, 435 leaves):

$$
\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a}
$$

$$
-\arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)-\operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right) b
$$

$$
2 d a \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}} \quad 2 d \sqrt{-a^{2} b(a-b)} \sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}
$$

$$
+\frac{\operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d a \sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}
$$

Problem 89: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} d x
$$

Optimal(type 3, 94 leaves, 5 steps):

$$
\frac{\arctan (\sinh (d x+c))}{(a-b)^{2} d}-\frac{b \sinh (d x+c)}{2 a(a-b) d\left(a+b \sinh (d x+c)^{2}\right)}-\frac{(3 a-b) \arctan \left(\frac{\sinh (d x+c) \sqrt{b}}{\sqrt{a}}\right) \sqrt{b}}{2 a^{3 / 2}(a-b)^{2} d}
$$

Result(type 3, 1177 leaves):

$$
\begin{aligned}
& b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& d(a-b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) \\
& b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& d(a-b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a \\
& b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& \overline{d(a-b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)} \\
& +\frac{b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d(a-b)^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a} \\
& +\frac{3 b a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}-\frac{2 b^{2} a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{d(a-b)^{2} \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}} \\
& -\frac{3 b \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}+\frac{3 b a^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} \sqrt{-a^{2} b(a-b)} \sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}} \\
& -\frac{2 b^{2} a \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{d(a-b)^{2} \sqrt{-a^{2} b(a-b)} \sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}+\frac{3 b \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} \sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}} \\
& +\frac{b^{3} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}+\frac{b^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} a \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}
\end{aligned}
$$

$$
+\frac{b^{3} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} \sqrt{-a^{2} b(a-b)} \sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}-\frac{b^{2} \operatorname{arctanh}\left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{2} a \sqrt{a^{2}-2 a b+2 \sqrt{-a^{2} b(a-b)}}}+\frac{2 \arctan \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d(a-b)^{2}}
$$

Problem 90: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{3}}{\left(a+b \sinh (d x+c)^{2}\right)^{2}} d x
$$

Optimal(type 3, 141 leaves, 6 steps):

$$
\begin{aligned}
& \frac{(a-5 b) \arctan (\sinh (d x+c))}{2(a-b)^{3} d}+\frac{(5 a-b) b^{3 / 2} \arctan \left(\frac{\sinh (d x+c) \sqrt{b}}{\sqrt{a}}\right)}{2 a^{3 / 2}(a-b)^{3} d}+\frac{b(a+b) \sinh (d x+c)}{2 a(a-b)^{2} d\left(a+b \sinh (d x+c)^{2}\right)} \\
& \quad+\frac{\operatorname{sech}(d x+c) \tanh (d x+c)}{2(a-b) d\left(a+b \sinh (d x+c)^{2}\right)}
\end{aligned}
$$

Result(type 3, 1362 leaves):

$$
\begin{aligned}
& b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3} \\
& d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) \\
& +\frac{b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{3}}{d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a} \\
& b^{2} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) \\
& \frac{d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right)}{} \\
& -\frac{b^{3} \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d(a-b)^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{4} a-2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a+4 b \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2}+a\right) a} \\
& -\frac{5 b^{2} a^{2} \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{2 d(a-b)^{3} \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}+\frac{3 b^{3} a \arctan \left(\frac{\tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a}{\sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}\right)}{d(a-b)^{3} \sqrt{-a^{2} b(a-b)} \sqrt{-a^{2}+2 a b+2 \sqrt{-a^{2} b(a-b)}}}
\end{aligned}
$$



Problem 91: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{6}}{\left(a+b \sinh (d x+c)^{2}\right)^{3}} d x
$$

Optimal(type 3, 146 leaves, 6 steps):

$$
\frac{x}{b^{3}}-\frac{\left(8 a^{2}+4 a b+3 b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right) \sqrt{a-b}}{8 a^{5 / 2} b^{3} d}-\frac{(a-b) \tanh (d x+c)}{4 a b d\left(a-(a-b) \tanh (d x+c)^{2}\right)^{2}}-\frac{(a-b)(4 a+3 b) \tanh (d x+c)}{8 a^{2} b^{2} d\left(a-(a-b) \tanh (d x+c)^{2}\right)}
$$

Result(type ?, 2365 leaves): Display of huge result suppressed!
Problem 92: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{2}}{\left(a+b \sinh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 129 leaves, 4 steps):

$$
\frac{(4 a-3 b) \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{8 a^{5 / 2}(a-b)^{3 / 2} d}-\frac{b \tanh (d x+c)}{4 a(a-b) d\left(a-(a-b) \tanh (d x+c)^{2}\right)^{2}}+\frac{(4 a-3 b) \tanh (d x+c)}{8 a^{2}(a-b) d\left(a-(a-b) \tanh (d x+c)^{2}\right)}
$$

Result(type ?, 2650 leaves): Display of huge result suppressed!
Problem 93: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)}{\left(a+b \sinh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 145 leaves, 6 steps):
$\frac{\arctan (\sinh (d x+c))}{(a-b)^{3} d}-\frac{b \sinh (d x+c)}{4 a(a-b) d\left(a+b \sinh (d x+c)^{2}\right)^{2}}-\frac{(7 a-3 b) b \sinh (d x+c)}{8 a^{2}(a-b)^{2} d\left(a+b \sinh (d x+c)^{2}\right)}$

$$
-\frac{\left(15 a^{2}-10 a b+3 b^{2}\right) \arctan \left(\frac{\sinh (d x+c) \sqrt{b}}{\sqrt{a}}\right) \sqrt{b}}{8 a^{5 / 2}(a-b)^{3} d}
$$

Result(type ?, 2395 leaves): Display of huge result suppressed!
Problem 94: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{3}}{\left(a+b \sinh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 199 leaves, 7 steps):


$$
+\frac{(-b+4 a) b(a+3 b) \sinh (d x+c)}{8 a^{2}(a-b)^{3} d\left(a+b \sinh (d x+c)^{2}\right)}+\frac{\operatorname{sech}(d x+c) \tanh (d x+c)}{2(a-b) d\left(a+b \sinh (d x+c)^{2}\right)^{2}}
$$

Result(type ?, 2584 leaves): Display of huge result suppressed!
Problem 95: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(d x+c)^{4}}{\left(a+b \sinh (d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 187 leaves, 6 steps):
$\frac{b^{2}\left(48 a^{2}-16 a b+3 b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh (d x+c)}{\sqrt{a}}\right)}{8 a^{5 / 2}(a-b)^{9 / 2} d}+\frac{(a-4 b) \tanh (d x+c)}{(a-b)^{4} d}-\frac{\tanh (d x+c)^{3}}{3(a-b)^{3} d}+\frac{4 a(a-b)^{4} d\left(a-(a-b) \tanh (d x+c)^{2}\right)^{2}}{4}$

$$
-\frac{(16 a-3 b) b^{3} \tanh (d x+c)}{8 a^{2}(a-b)^{4} d\left(a-(a-b) \tanh (d x+c)^{2}\right)}
$$

Result(type ?, 2123 leaves): Display of huge result suppressed!
Problem 96: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{2}}{1-\sinh (x)^{2}} d x
$$

Optimal(type 3, 15 leaves, 4 steps):

$$
-x+\operatorname{arctanh}(\sqrt{2} \tanh (x)) \sqrt{2}
$$

Result(type 3, 53 leaves):

$$
\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)+\sqrt{2} \operatorname{arctanh}\left(\frac{\left(2 \tanh \left(\frac{x}{2}\right)+2\right) \sqrt{2}}{4}\right)-\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)+\sqrt{2} \operatorname{arctanh}\left(\frac{\left(2 \tanh \left(\frac{x}{2}\right)-2\right) \sqrt{2}}{4}\right)
$$

Problem 97: Unable to integrate problem.

$$
\int \operatorname{sech}(f x+e) \sqrt{a+b \sinh (f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 73 leaves, 6 steps):

$$
\frac{\arctan \left(\frac{\sinh (f x+e) \sqrt{a-b}}{\sqrt{a+b \sinh (f x+e)^{2}}}\right) \sqrt{a-b}}{f}+\frac{\operatorname{arctanh}\left(\frac{\sinh (f x+e) \sqrt{b}}{\sqrt{a+b \sinh (f x+e)^{2}}}\right) \sqrt{b}}{f}
$$

Result(type 9, 50 leaves):

$$
\frac{\operatorname{int/indef0}\left(-\frac{-b \sinh (f x+e)^{2}-a}{\cosh (f x+e)^{2} \sqrt{a+b \sinh (f x+e)^{2}}}, \sinh (f x+e)\right)}{f}
$$

Problem 99: Unable to integrate problem.

$$
\int \operatorname{sech}(f x+e)\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 107 leaves, 7 steps):

$$
\frac{(a-b)^{3 / 2} \arctan \left(\frac{\sinh (f x+e) \sqrt{a-b}}{\sqrt{a+b \sinh (f x+e)^{2}}}\right)}{f}+\frac{(3 a-2 b) \operatorname{arctanh}\left(\frac{\sinh (f x+e) \sqrt{b}}{\sqrt{a+b \sinh (f x+e)^{2}}}\right) \sqrt{b}}{2 f}+\frac{b \sinh (f x+e) \sqrt{a+b \sinh (f x+e)^{2}}}{2 f}
$$

Result(type 9, 62 leaves):

$$
\frac{\text { int/indef0 }\left(\frac{b^{2} \sinh (f x+e)^{4}+2 a b \sinh (f x+e)^{2}+a^{2}}{\cosh (f x+e)^{2} \sqrt{a+b \sinh (f x+e)^{2}}}, \sinh (f x+e)\right)}{f}
$$

Problem 101: Unable to integrate problem.

$$
\int \frac{\operatorname{sech}(f x+e)}{\sqrt{a+b \sinh (f x+e)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 40 leaves, 3 steps):

$$
\frac{\arctan \left(\frac{\sinh (f x+e) \sqrt{a-b}}{\sqrt{a+b \sinh (f x+e)^{2}}}\right)}{f \sqrt{a-b}}
$$

Result(type 9, 34 leaves):


Problem 103: Unable to integrate problem.

$$
\int \frac{\cosh (f x+e)^{3}}{\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 69 leaves, 4 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sinh (f x+e) \sqrt{b}}{\sqrt{a+b \sinh (f x+e)^{2}}}\right)}{b^{3 / 2} f}-\frac{(a-b) \sinh (f x+e)}{a b f \sqrt{a+b \sinh (f x+e)^{2}}}
$$

Result(type 9, 34 leaves):

$$
\text { int/indef0 }\left(\frac{\cosh (f x+e)^{2}}{\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}, \sinh (f x+e)\right)
$$

[^4]$$
\int \frac{\cosh (f x+e)^{3}}{\left(a+b \sinh (f x+e)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 65 leaves, 3 steps):

$$
\frac{\cosh (f x+e)^{2} \sinh (f x+e)}{3 a f\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}+\frac{2 \sinh (f x+e)}{3 a^{2} f \sqrt{a+b \sinh (f x+e)^{2}}}
$$

Result(type 9, 64 leaves):


Problem 108: Unable to integrate problem.

$$
\int \cosh (f x+e)\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 65 leaves, 3 steps):

$$
\frac{\text { hypergeom }\left(\left[\frac{1}{2},-p\right],\left[\frac{3}{2}\right],-\frac{b \sinh (f x+e)^{2}}{a}\right) \sinh (f x+e)\left(a+b \sinh (f x+e)^{2}\right)^{p}}{f\left(1+\frac{b \sinh (f x+e)^{2}}{a}\right)^{p}}
$$

Result(type 8, 23 leaves):

$$
\int \cosh (f x+e)\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Problem 109: Unable to integrate problem.

$$
\int \cosh (f x+e)^{2}\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 6, 84 leaves, 3 steps):

$$
\frac{\text { AppellF1 }\left(\frac{1}{2},-\frac{1}{2},-p, \frac{3}{2},-\sinh (f x+e)^{2},-\frac{b \sinh (f x+e)^{2}}{a}\right)\left(a+b \sinh (f x+e)^{2}\right)^{p} \sqrt{\cosh (f x+e)^{2}} \tanh (f x+e)}{f\left(1+\frac{b \sinh (f x+e)^{2}}{a}\right)^{p}}
$$

Result(type 8, 25 leaves):

$$
\int \cosh (f x+e)^{2}\left(a+b \sinh (f x+e)^{2}\right)^{p} \mathrm{~d} x
$$

Problem 110: Unable to integrate problem.

Optimal(type 3, 248 leaves, 4 steps):

$$
\begin{aligned}
& \frac{2\left(a^{4}+b^{4}\right)\left(9 a^{4}+b^{4}\right) \ln (a+b \sqrt{\sinh (d x+c)})}{b^{10} d}+\frac{a^{2}\left(7 a^{4}+6 b^{4}\right) \sinh (d x+c)}{b^{8} d}-\frac{4 a\left(3 a^{4}+2 b^{4}\right) \sinh (d x+c)^{3 / 2}}{3 b^{7} d}+\frac{\left(5 a^{4}+2 b^{4}\right) \sinh (d x+c)^{2}}{2 b^{6} d} \\
& \quad-\frac{8 a^{3} \sinh (d x+c)^{5 / 2}}{5 b^{5} d}+\frac{a^{2} \sinh (d x+c)^{3}}{b^{4} d}-\frac{4 a \sinh (d x+c)^{7 / 2}}{7 b^{3} d}+\frac{\sinh (d x+c)^{4}}{4 b^{2} d}-\frac{16 a^{3}\left(a^{4}+b^{4}\right) \sqrt{\sinh (d x+c)}}{b^{9} d} \\
& \quad+\frac{2 a\left(a^{4}+b^{4}\right)^{2}}{b^{10} d(a+b \sqrt{\sinh (d x+c)})}
\end{aligned}
$$

Result(type 9, 954 leaves):

$$
\begin{aligned}
& -\frac{8 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{4}}{d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a^{2}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}-a^{2}\right)}-\frac{4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) a^{8}}{d b^{8}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a^{2}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}-a^{2}\right)} \\
& +\frac{9 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a^{2}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}-a^{2}\right) a^{8}}{d b^{10}}+\frac{10 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a^{2}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}-a^{2}\right) a^{4}}{d b^{6}} \\
& -\frac{7 a^{6}}{d b^{8}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}-\frac{5 a^{4}}{2 d b^{6}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}-\frac{6 a^{2}}{d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}-\frac{a^{2}}{d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}} \\
& +\frac{5 a^{4}}{2 d b^{6}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}+\frac{3 a^{2}}{2 d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}-\frac{9 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) a^{8}}{d b^{10}}-\frac{10 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right) a^{4}}{d b^{6}} \\
& -\frac{7 a^{6}}{d b^{8}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}+\frac{5 a^{4}}{2 d b^{6}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{6 a^{2}}{d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{a^{2}}{d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}} \\
& +\frac{5 a^{4}}{2 d b^{6}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{3 a^{2}}{2 d b^{4}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{9 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) a^{8}}{d b^{10}}-\frac{10 \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right) a^{4}}{d b^{6}} \\
& +\frac{\text { int/indef0 }\left(-\frac{2 \cosh (d x+c)^{4} a b \sqrt{\sinh (d x+c)}}{b^{4} \sinh (d x+c)^{2}-2 a^{2} b^{2} \sinh (d x+c)+a^{4}}, \sinh (d x+c)\right)}{d}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d b^{2}}-\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d b^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{4 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)}{d\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a^{2}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}-a^{2}\right)}+\frac{9}{8 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}+\frac{1}{4 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{4}} \\
& +\frac{1}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}}+\frac{9}{8 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} a^{2}+2 \tanh \left(\frac{d x}{2}+\frac{c}{2}\right) b^{2}-a^{2}\right)}{d b^{2}} \\
& +\frac{1}{4 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{4}}-\frac{1}{2 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}}+\frac{7}{8 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{7}{8 d b^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}
\end{aligned}
$$

Problem 111: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)}{(a+b \sqrt{\sinh (d x+c)})^{2}} d x
$$

Optimal(type 3, 45 leaves, 4 steps):

$$
\frac{2 \ln (a+b \sqrt{\sinh (d x+c)})}{b^{2} d}+\frac{2 a}{b^{2} d(a+b \sqrt{\sinh (d x+c)})}
$$

Result(type 3, 143 leaves):

$$
\begin{aligned}
& -\frac{2 a^{2}}{d\left(\sinh (d x+c) b^{2}-a^{2}\right) b^{2}}+\frac{\ln \left(\sinh (d x+c) b^{2}-a^{2}\right)}{d b^{2}}+\frac{a}{b^{2} d(a+b \sqrt{\sinh (d x+c)})}+\frac{\ln (a+b \sqrt{\sinh (d x+c)})}{b^{2} d}+\frac{a}{d b^{2}(b \sqrt{\sinh (d x+c)}-a)} \\
& \quad-\frac{\ln (b \sqrt{\sinh (d x+c)}-a)}{d b^{2}}
\end{aligned}
$$

Problem 112: Unable to integrate problem.

$$
\int \frac{\cosh (d x+c)^{5}}{\left(a+b \sinh (d x+c)^{n}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 5, 132 leaves, 6 steps):


Result(type 8, 723 leaves):

$$
\begin{aligned}
& \left(\left(\left(\mathrm{e}^{d x+c}\right)^{8}+4\left(\mathrm{e}^{d x+c}\right)^{6}+6\left(\mathrm{e}^{d x+c}\right)^{4}+4\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)\left(\mathrm{e}^{d x+c}-1\right)\left(1+\mathrm{e}^{d x+c}\right)\right) /\left(32\left(\mathrm{e}^{d x+c}\right)^{5} n a d(a\right. \\
& \mathrm{e}^{n} \begin{array}{l}
n-\ln (2)-\ln \left(\mathrm{e}^{d x+c}\right)+\ln \left(\mathrm{e}^{d x+c}-1\right)+\ln \left(1+\mathrm{e}^{d x+c}\right)
\end{array} \\
& -\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x}+c-1\right)\left(1+\mathrm{e}^{d x}+c\right)\right)\left(-\operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x}+c-1\right)\left(1+\mathrm{e}^{d x}+c\right)\right)+\operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\right)\right)\left(-\operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x}+c-1\right)\left(1+\mathrm{e}^{d x+c}\right)\right)+\operatorname{csgn}\left(\mathrm{I}\left(1+\mathrm{e}^{d x+c}\right)\right)\right)}{2} \\
& \left.\left.-\frac{\left.\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\left(1+\mathrm{e}^{d x}+c\right)}{\mathrm{e}^{d x+c}}\right)\left(-\operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\left(1+\mathrm{e}^{d x+c}\right)}{\mathrm{e}^{d x+c}}\right)+\operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{d x+c}}\right)\right)\left(-\operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\left(1+\mathrm{e}^{d x+c}\right)}{\left.\mathrm{e}^{d x+c}\right)+\operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x+c-1}\right)\left(1+\mathrm{e}^{d x+c}\right)\right)}\right)\right)\right)}{2}\right)\right) \\
& +\int^{\left(n\left(\mathrm{e}^{d x+c}\right)^{10}-5\left(\mathrm{e}^{d x+c}\right)^{10}+5 n\left(\mathrm{e}^{d x+c}\right)^{8}-9\left(\mathrm{e}^{d x+c}\right)^{8}+10 n\left(\mathrm{e}^{d x+c}\right)^{6}-2\left(\mathrm{e}^{d x+c}\right)^{6}+10 n\left(\mathrm{e}^{d x+c}\right)^{4}-2\left(\mathrm{e}^{d x+c}\right)^{4}+5 n\left(\mathrm{e}^{d x+c}\right)^{2}\right.} \\
& \left.-9\left(\mathrm{e}^{d x+c}\right)^{2}+n-5\right) /\left(32\left(\mathrm{e}^{d x+c}\right)^{5} n a(a\right. \\
& +b \\
& \mathrm{e}^{n\left(-\ln (2)-\ln \left(\mathrm{e}^{d x+c}\right)+\ln \left(\mathrm{e}^{d x+c}-1\right)+\ln \left(1+\mathrm{e}^{d x+c}\right)\right.}
\end{aligned}
$$

$-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\left(1+\mathrm{e}^{d x+c}\right)\right)\left(-\operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\left(1+\mathrm{e}^{d x+c}\right)\right)+\operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\right)\right)\left(-\operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{d x+c}-1\right)\left(1+\mathrm{e}^{d x+c}\right)\right)+\operatorname{csgn}\left(\mathrm{I}\left(1+\mathrm{e}^{d x+c}\right)\right)\right)}{2}$ 2


Problem 113: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)}{1-\sinh (x)^{2}} d x
$$

Optimal(type 3, 15 leaves, 4 steps):

$$
\ln (\sinh (x))-\frac{\ln \left(1-\sinh (x)^{2}\right)}{2}
$$

Result(type 3, 40 leaves):

$$
\ln \left(\tanh \left(\frac{x}{2}\right)\right)-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right)-1\right)}{2}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}-2 \tanh \left(\frac{x}{2}\right)-1\right)}{2}
$$

Problem 114: Unable to integrate problem.

$$
\int \operatorname{coth}(f x+e)^{3} \sqrt{a+a \sinh (f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 71 leaves, 7 steps):

$$
-\frac{\left(a \cosh (f x+e)^{2}\right)^{3 / 2} \operatorname{csch}(f x+e)^{2}}{2 a f}-\frac{3 \operatorname{arctanh}\left(\frac{\sqrt{a \cosh (f x+e)^{2}}}{\sqrt{a}}\right) \sqrt{a}}{2 f}+\frac{3 \sqrt{a \cosh (f x+e)^{2}}}{2 f}
$$

Result(type 9, 53 leaves):


Problem 118: Unable to integrate problem.

$$
\int \frac{\tanh (f x+e)^{5}}{\sqrt{a+a \sinh (f x+e)^{2}}} d x
$$

Optimal(type 3, 56 leaves, 5 steps):

$$
-\frac{a^{2}}{5 f\left(a \cosh (f x+e)^{2}\right)^{5 / 2}}+\frac{2 a}{3 f\left(a \cosh (f x+e)^{2}\right)^{3 / 2}}-\frac{1}{f \sqrt{a \cosh (f x+e)^{2}}}
$$

Result(type 9, 40 leaves):


Problem 121: Unable to integrate problem.

$$
\int \frac{\tanh (f x+e)^{5}}{\left(a+a \sinh (f x+e)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 56 leaves, 5 steps):

$$
-\frac{a^{2}}{7 f\left(a \cosh (f x+e)^{2}\right)^{7 / 2}}+\frac{2 a}{5 f\left(a \cosh (f x+e)^{2}\right)^{5 / 2}}-\frac{1}{3 f\left(a \cosh (f x+e)^{2}\right)^{3 / 2}}
$$

Result(type 9, 43 leaves):

$$
\frac{\operatorname{int/indef0}\left(\frac{\sinh (f x+e)^{5}}{\cosh (f x+e)^{8} a \sqrt{a \cosh (f x+e)^{2}}}, \sinh (f x+e)\right)}{f}
$$

Problem 124: Unable to integrate problem.

$$
\int \operatorname{coth}(f x+e) \sqrt{a+b \sinh (f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 46 leaves, 4 steps):


Result(type 9, 45 leaves):

$$
\text { int/indef0 }\left(\frac{b \sinh (f x+e)+\frac{a}{\sinh (f x+e)}}{\sqrt{a+b \sinh (f x+e)^{2}}}, \sinh (f x+e)\right)
$$

Problem 125: Unable to integrate problem.

$$
\int \operatorname{coth}(f x+e)^{5} \sqrt{a+b \sinh (f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 147 leaves, 6 steps):

$$
\begin{aligned}
-\frac{\left(8 a^{2}+8 a b-b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{a+b \sinh (f x+e)^{2}}}{\sqrt{a}}\right)}{8 a^{3 / 2} f}-\frac{(8 a-b) \operatorname{csch}(f x+e)^{2}\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}{8 a^{2} f}-\frac{\operatorname{csch}(f x+e)^{4}\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}{4 a f} \\
\quad+\frac{\left(8 a^{2}+8 a b-b^{2}\right) \sqrt{a+b \sinh (f x+e)^{2}}}{8 a^{2} f}
\end{aligned}
$$

Result(type 9, 79 leaves):


Problem 128: Unable to integrate problem.

$$
\int\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2} \tanh (f x+e)^{5} \mathrm{~d} x
$$

Optimal(type 3, 208 leaves, 7 steps):

$$
\begin{gathered}
\frac{\left(8 a^{2}-40 a b+35 b^{2}\right)\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}{24(a-b)^{2} f}+\frac{(8 a-9 b) \operatorname{sech}(f x+e)^{2}\left(a+b \sinh (f x+e)^{2}\right)^{5 / 2}}{8(a-b)^{2} f}-\frac{\operatorname{sech}(f x+e)^{4}\left(a+b \sinh (f x+e)^{2}\right)^{5 / 2}}{4(a-b) f} \\
-\frac{\left(8 a^{2}-40 a b+35 b^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{a+b \sinh (f x+e)^{2}}}{8 \sqrt{a-b}}\right)}{8 f \sqrt{a-b}}+\frac{\left(8 a^{2}-40 a b+35 b^{2}\right) \sqrt{a+b \sinh (f x+e)^{2}}}{8(a-b) f}
\end{gathered}
$$

Result(type 9, 70 leaves):

$$
\frac{\operatorname{int} / \operatorname{indef} 0\left(\frac{\sinh (f x+e)^{5}\left(b^{2} \sinh (f x+e)^{4}+2 a b \sinh (f x+e)^{2}+a^{2}\right)}{\cosh (f x+e)^{6} \sqrt{a+b \sinh (f x+e)^{2}}}, \sinh (f x+e)\right)}{f}
$$

Problem 129: Unable to integrate problem.

$$
\int \operatorname{coth}(f x+e)\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 66 leaves, 5 steps):

$$
-\frac{a^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a+b \sinh (f x+e)^{2}}}{\sqrt{a}}\right)}{f}+\frac{\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}{3 f}+\frac{a \sqrt{a+b \sinh (f x+e)^{2}}}{f}
$$

Result(type 9, 61 leaves):

$$
\frac{\operatorname{int} / \operatorname{indef0}\left(\frac{b^{2} \sinh (f x+e)^{3}+2 a b \sinh (f x+e)+\frac{a^{2}}{\sinh (f x+e)}}{\sqrt{a+b \sinh (f x+e)^{2}}}, \sinh (f x+e)\right)}{f}
$$

Problem 130: Unable to integrate problem.

$$
\int \operatorname{coth}(f x+e)^{3}\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 120 leaves, 6 steps):
$\frac{(2 a+3 b)\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}{6 a f}-\frac{\operatorname{csch}(f x+e)^{2}\left(a+b \sinh (f x+e)^{2}\right)^{5 / 2}}{2 a f}-\frac{(2 a+3 b) \operatorname{arctanh}\left(\frac{\sqrt{a+b \sinh (f x+e)^{2}}}{\sqrt{a}}\right) \sqrt{a}}{2 f}$

$$
+\frac{(2 a+3 b) \sqrt{a+b \sinh (f x+e)^{2}}}{2 f}
$$

Result(type 9, 83 leaves):

$$
\frac{\text { int/indef0 }\left(\frac{b^{2} \sinh (f x+e)^{3}+\left(2 a b+b^{2}\right) \sinh (f x+e)+\frac{a^{2}+2 a b}{\sinh (f x+e)}+\frac{a^{2}}{\sinh (f x+e)^{3}}}{\sqrt{a+b \sinh (f x+e)^{2}}}, \sinh (f x+e)\right)}{f}
$$

Problem 133: Unable to integrate problem.

$$
\int \frac{\operatorname{coth}(f x+e)^{5}}{\sqrt{a+b \sinh (f x+e)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 110 leaves, 5 steps):


Result(type 9, 53 leaves):

$$
\frac{\operatorname{int/indef0}\left(\frac{\frac{1}{\sinh (f x+e)}+\frac{2}{\sinh (f x+e)^{3}}+\frac{1}{\sinh (f x+e)^{5}}}{\sqrt{a+b \sinh (f x+e)^{2}}}, \sinh (f x+e)\right)}{f}
$$

Problem 134: Unable to integrate problem.

$$
\int \frac{\tanh (f x+e)^{3}}{\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 106 leaves, 5 steps):

$$
-\frac{(2 a+b) \operatorname{arctanh}\left(\frac{\sqrt{a+b \sinh (f x+e)^{2}}}{\sqrt{a-b}}\right)}{2(a-b)^{5 / 2} f}+\frac{2 a+b}{2(a-b)^{2} f \sqrt{a+b \sinh (f x+e)^{2}}}+\frac{\operatorname{sech}(f x+e)^{2}}{2(a-b) f \sqrt{a+b \sinh (f x+e)^{2}}}
$$

Result(type 9, 102 leaves):

$$
\frac{\text { int/indef0 }\left(-\frac{\sinh (f x+e)^{3} \sqrt{a+b \sinh (f x+e)^{2}} \cosh (f x+e)^{2}}{-b^{2} \cosh (f x+e)^{10}+\left(-2 a b+2 b^{2}\right) \cosh (f x+e)^{8}+\left(-a^{2}+2 a b-b^{2}\right) \cosh (f x+e)^{6}}, \sinh (f x+e)\right)}{f}
$$

Problem 135: Unable to integrate problem.

$$
\int \frac{\operatorname{coth}(f x+e)}{\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 4 steps):


Result(type 9, 34 leaves):


Problem 136: Unable to integrate problem.

$$
\int \frac{\operatorname{coth}(f x+e)^{3}}{\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 94 leaves, 5 steps):

$$
-\frac{(2 a-3 b) \operatorname{arctanh}\left(\frac{\sqrt{a+b \sinh (f x+e)^{2}}}{\sqrt{a}}\right)}{2 a^{5 / 2} f}+\frac{2 a-3 b}{2 a^{2} f \sqrt{a+b \sinh (f x+e)^{2}}}-\frac{\operatorname{csch}(f x+e)^{2}}{2 a f \sqrt{a+b \sinh (f x+e)^{2}}}
$$

Result(type 9, 42 leaves):


Problem 137: Unable to integrate problem.

$$
\int \frac{\operatorname{coth}(f x+e)^{3}}{\left(a+b \sinh (f x+e)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 123 leaves, 6 steps):

$$
-\frac{(2 a-5 b) \operatorname{arctanh}\left(\frac{\sqrt{a+b \sinh (f x+e)^{2}}}{\sqrt{a}}\right)}{2 a^{7 / 2} f}+\frac{2 a-5 b}{6 a^{2} f\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}-\frac{\operatorname{csch}(f x+e)^{2}}{2 a f\left(a+b \sinh (f x+e)^{2}\right)^{3 / 2}}+\frac{2 a-5 b}{2 a^{3} f \sqrt{a+b \sinh (f x+e)^{2}}}
$$

Result(type 9, 72 leaves):


Problem 139: Unable to integrate problem.

$$
\int \operatorname{coth}(d x+c)^{3}\left(a+b \sinh (d x+c)^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 92 leaves, 3 steps):

$$
-\frac{\operatorname{csch}(d x+c)^{2}\left(a+b \sinh (d x+c)^{2}\right)^{1+p}}{2 a d}-\frac{(p b+a) \text { hypergeom }\left([1,1+p],[2+p], 1+\frac{b \sinh (d x+c)^{2}}{a}\right)\left(a+b \sinh (d x+c)^{2}\right)^{1+p}}{2 a^{2} d(1+p)}
$$

Result(type 8, 25 leaves):
$\int \operatorname{coth}(d x+c)^{3}\left(a+b \sinh (d x+c)^{2}\right)^{p} d x$

Summary of Integration Test Results
417 integration problems


A - 202 optimal antiderivatives
B - 110 more than twice size of optimal antiderivatives
C - 4 unnecessarily complex antiderivatives
D - 101 unable to integrate problems
E - 0 integration timeouts


[^0]:    Problem 85: Result more than twice size of optimal antiderivative.

[^1]:    Problem 100: Result more than twice size of optimal antiderivative.

[^2]:    Problem 117: Unable to integrate problem.

[^3]:    Problem 14: Result more than twice size of optimal antiderivative.

[^4]:    Problem 107: Unable to integrate problem.

